Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders

  • Monique Piraud
  • Magali Pettazzoni
  • Pamela Lavoie
  • Séverine Ruet
  • Cécile Pagan
  • David Cheillan
  • Philippe Latour
  • Christine Vianey-Saban
  • Christiane Auray-Blais
  • Roseline Froissart
Metabolomics

Abstract

Tandem mass spectrometry (MS/MS) is a highly sensitive and specific technique. Thanks to the development of triple quadrupole analyzers, it is becoming more widely used in laboratories working in the field of inborn errors of metabolism. We review here the state of the art of this technique applied to the diagnosis of lysosomal storage disorders (LSDs) and how MS/MS has changed the diagnostic rationale in recent years. This fine technology brings more sensitive, specific, and reliable methods than the previous biochemical ones for the analysis of urinary glycosaminoglycans, oligosaccharides, and sialic acid. In sphingolipidoses, the quantification of urinary sphingolipids (globotriaosylceramide, sulfatides) is possible. The measurement of new plasmatic biomarkers such as oxysterols, bile acids, and lysosphingolipids allows the screening of many sphingolipidoses and related disorders (Niemann–Pick type C), replacing tedious biochemical techniques. Applied to amniotic fluid, a more reliable prenatal diagnosis or screening of LSDs is now available for fetuses presenting with antenatal manifestations. Applied to enzyme measurements, it allows high throughput assays for the screening of large populations, even newborn screening. The advent of this new method can modify the diagnostic rationale behind LSDs.

Keywords

Lysosomal storage diseases Tandem mass spectrometry Biomarkers 

Abbreviations

AF

Amniotic fluid

ARSA

Arylsulfatase A

BAB

Butyl-4-aminobenzoate

CLN

Ceroid lipofuscinosis

CS

Chondroitin sulfate

DBS

Dried blood spots

DMB

1,9-Dimethylmethylene blue

DUS

Dried urine spots

DS

Dermatan sulfate

ERT

Enzyme replacement therapy

FD

Fabry disease

FIA

Flow injection analysis

GAGs

Glycosaminoglycans

Gb3

Globotriaosylceramide

GD

Gaucher disease

GlcNAsn

Aspartylglucosamine

GSD

Glycogen storage disease

GVUS

Genetic variant of unknown significance

HS

Heparan sulfate

IS

Internal standard

ISSD

Infantile sialic acid storage disorder

KD

Krabbe disease

KS

Keratan sulfate

LALD

Lysosomal acid lipase deficiency

LC

Liquid chromatography

LLE

Liquid–liquid extraction

LSDs

Lysosomal storage disorders

LSL

Lysosphingolipid

LysoGalCer

Lysogalactosylceramide

Lyso-Gb3

Lysoglobotriaosylceramide

LysoGlcCer

Lysoglucosylceramide

LysoHexCer

Lysohexosylceramide

LysoSM

Lysosphingomyelin

Lyso509

Analogue 509 of lysosphingomyelin

MLD

Metachromatic leukodystrophy

MPS

Mucopolysaccharidosis

MRM

Multiple reaction monitoring

MoM

Multiple of median

MS/MS

Tandem mass spectrometry

MSD

Multiple sulfatase deficiency

NBS

Newborn screening

NIHF

Nonimmune hydrops fetalis

NP

Niemann–Pick disease

NPAB

Niemann-Pick disease type A/B

NPC

Niemann–Pick disease type C

OS

Oligosaccharides

PD

Pompe disease

PMP

1-Phenyl-3-methyl-5-pyrazolone

RT

Retention time

SL

Sphingolipid

SM

Sphingomyelin

SPE

Solid-phase extraction

TLC

Thin-layer chromatography

TOF

Time of flight

Notes

Compliance with ethical standards

Conflict of interest

David Cheillan and Séverine Ruet declare they have no conflict of interest.

Christiane Auray-Blais declares she has received reimbursement for attending a symposium from Shire and Sanofi-Genzyme, fees for speaking or organizing education from Shire and Sanofi-Genzyme, funds for research or for a member of staff from Shire, Sanofi-Genzyme and BioMarin Pharmaceuticals, fees for consulting from Amicus Therapeutics, funds for traveling expenses and lectures given from Waters Corp.

Roseline Froissart declares she has received reimbursement for attending a symposium from Sanofi-Genzyme.

Pamela Lavoie declares she has received reimbursement for attending a symposium from Sanofi-Genzyme, BioMarin Pharmaceuticals and Waters Corp, fees for speaking or organizing education from Shire.

Philippe Latour and Cécile Pagan declare they have received reimbursement for attending a symposium and fees for speaking or organizing education from Actelion Pharmaceuticals.

Magali Pettazzoni declares she has received reimbursement for attending a symposium from Shire and BioMarin Pharmaceuticals.

Monique Piraud declares she has received reimbursement for attending a symposium from Shire, Sanofi-Genzyme, and Actelion Pharmaceuticals.

Christine Vianey-Saban declares she has received reimbursement for attending a symposium from Sanofi-Genzyme and BioMarin Pharmaceuticals, and funds for research or for a member of staff from Sanofi-Genzyme.

Supplementary material

10545_2017_126_MOESM1_ESM.doc (196 kb)
ESM 1 (DOC 195 kb)
10545_2017_126_MOESM2_ESM.doc (130 kb)
ESM 1 (DOC 130 kb)
10545_2017_126_MOESM3_ESM.doc (264 kb)
ESM 2 (DOC 264 kb)

References

  1. Abaoui M, Boutin M, Lavoie P, Auray-Blais C (2016) Tandem mass spectrometry multiplex analysis of methylated and nonmethylated urinary Gb3 isoforms in Fabry disease patients. Clin Chim Acta 452:191–198.  https://doi.org/10.1016/j.cca.2015.11.018 PubMedCrossRefGoogle Scholar
  2. Aerts JM, Groener JE, Kuiper S et al (2008) Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A 105:2812–2817.  https://doi.org/10.1073/pnas.0712309105 PubMedPubMedCentralCrossRefGoogle Scholar
  3. An Y, Young SP, Hillman SL, Van Hove JL, Chen YT, Millington DS (2000) Liquid chromatographic assay for a glucose tetrasaccharide, a putative biomarker for the diagnosis of Pompe disease. Anal Biochem 287:136–143PubMedCrossRefGoogle Scholar
  4. Arends M, Wanner C, Hughes D et al (2016) Characterization of classical and nonclassical Fabry disease: A multicenter study. J Am Soc Nephrol 28:1631–1641.  https://doi.org/10.1681/ASN.2016090964 PubMedCrossRefGoogle Scholar
  5. Aula P, Raivio K, Autio S et al (1978) Four patients with a new lysosomal storage disorder (Salla disease). Monogr Hum Genet 10:16–22PubMedCrossRefGoogle Scholar
  6. Auray-Blais C, Clarke JTR, Young SP, Millington DS, Schiffmann R (2009) Proposed high-risk screening protocol for Fabry disease in patients with renal and vascular disease. J Inherit Metab Dis 32:303–308.  https://doi.org/10.1007/s10545-009-1055-6 PubMedCrossRefGoogle Scholar
  7. Auray-Blais C, Bhérer P, Gagnon R et al (2011) Efficient analysis of urinary glycosaminoglycans by LC-MS/MS in mucopolysaccharidoses type I, II and VI. Mol Genet Metab 102:49–56.  https://doi.org/10.1016/j.ymgme.2010.09.003 PubMedCrossRefGoogle Scholar
  8. Auray-Blais C, Lavoie P, Zhang H et al (2012a) An improved method for glycosaminoglycan analysis by LC-MS/MS of urine samples collected on filter paper. Clin Chim Acta 413:771–778.  https://doi.org/10.1016/j.cca.2012.01.012 PubMedCrossRefGoogle Scholar
  9. Auray-Blais C, Boutin M, Gagnon R, Dupont FO, Lavoie P, Clarke JT (2012b) Urinary globotriaosylsphingosine-related biomarkers for Fabry disease targeted by metabolomics. Anal Chem 84:2745–2753.  https://doi.org/10.1021/ac203433e PubMedCrossRefGoogle Scholar
  10. Auray-Blais C, Blais CM, Ramaswami U et al (2015) Urinary biomarker investigation in children with Fabry disease using tandem mass spectrometry. Clin Chim Acta 438:195–204.  https://doi.org/10.1016/j.cca.2014.08.002 PubMedCrossRefGoogle Scholar
  11. Auray-Blais C, Lavoie P, Tomatsu S et al (2016) UPLC-MS/MS detection of disaccharides derived from glycosaminoglycans as biomarkers of mucopolysaccharidoses. Anal Chim Acta 936:139–148.  https://doi.org/10.1016/j.aca.2016.06.054 PubMedCrossRefGoogle Scholar
  12. Auray-Blais C, Lavoie P, Boutin M et al (2017a) Biomarkers associated with clinical manifestations in Fabry disease patients with a late-onset cardiac variant mutation. Clin Chim Acta 466:185–193.  https://doi.org/10.1016/j.cca.2017.01.018 PubMedCrossRefGoogle Scholar
  13. Auray-Blais C, Lavoie P, Boutin M, Abaoui M (2017b) High-risk screening for Fabry disease: analysis by tandem mass spectrometry of globotriaosylceramide (Gb3) in urine collected on filter paper. Curr Protoc Hum Genet 93:17.26.1–17.26.12.  https://doi.org/10.1002/cphg.34 CrossRefGoogle Scholar
  14. Barcenas M, Suhr TR, Scott CR, Turecek F, Gelb MH (2014a) Quantification of sulfatides in dried blood and urine spots from metachromatic leukodystrophy patients by liquid chromatography/electrospray tandem mass spectrometry. Clin Chim Acta 433:39–43.  https://doi.org/10.1016/j.cca.2013.12.016 PubMedCrossRefGoogle Scholar
  15. Barcenas M, Xue C, Marushchak-Vlaskin T, Scott CR, Gelb MH, Tureček F (2014b) Tandem mass spectrometry assays of palmitoyl protein thioesterase 1 and tripeptidyl peptidase activity in dried blood spots for the detection of neuronal ceroid lipofuscinoses in newborns. Anal Chem 86:7962–7968.  https://doi.org/10.1021/ac501994b PubMedPubMedCentralCrossRefGoogle Scholar
  16. Barmherzig R, Bullivant G, Cordeiro D, Sinasac DS, Blaser S, Mercimek-Mahmutoglu S (2017) A new patient with intermediate severe Salla disease with hypomyelination: a literature review for Salla disease. Pediatr Neurol 74:87–91.e2.  https://doi.org/10.1016/j.pediatrneurol.2017.05.022 PubMedCrossRefGoogle Scholar
  17. Boenzi S, Deodato F, Taurisano R et al (2014) A new simple and rapid LC-ESI-MS/MS method for quantification of plasma oxysterols as dimethylaminobutyrate esters. Its successful use for the diagnosis of Niemann-Pick type C disease. Clin Chim Acta 437:93–100.  https://doi.org/10.1016/j.cca.2014.07.010 PubMedCrossRefGoogle Scholar
  18. Boenzi S, Deodato F, Taurisano R, Goffredo B, M Rizzo, C, Dionisi-Vici (2016) Evaluation of plasma cholestane-3β,5α,6β-triol and 7-ketocholesterol in inherited disorders related to cholesterol metabolism. J Lipid Res 57: 361–367.  https://doi.org/10.1194/jlr.M061978
  19. Bonesso L, Piraud M, Caruba C, Van Obberghen E, Mengual R, Hinault C (2014) Fast urinary screening of oligosaccharidoses by MALDI-TOF/TOF mass spectrometry. Orphanet J Rare Dis 9:19.  https://doi.org/10.1186/1750-1172-9-19 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Boot RG, Renkema GH, Verhoek M et al (1998) The human chitotriosidase gene. Nature of inherited enzyme deficiency. J Biol Chem 2:25680–25685CrossRefGoogle Scholar
  21. Boutin M, Auray-Blais C (2014) Multiplex tandem mass spectrometry analysis of novel plasma lyso-Gb3-related analogues in Fabry disease. Anal Chem 86:3476–3483.  https://doi.org/10.1021/ac404000d PubMedCrossRefGoogle Scholar
  22. Boutin M, Gagnon R, Lavoie P, Auray-Blais C (2012) LC-MS/MS analysis of plasma lyso-Gb3 in Fabry disease. Clin Chim Acta 414:273–280.  https://doi.org/10.1016/j.cca.2012.09.026 PubMedCrossRefGoogle Scholar
  23. Brand GD, Matos HC, Cruz GC, Fontes Ndo C, Buzzi M, Brum JM (2013) Diagnosing lysosomal storage diseases in a Brazilian nonnewborn population by tandem mass spectrometry. Clinics (Sao Paulo) 68:1469–1473.  https://doi.org/10.6061/clinics/2013(11)14 CrossRefGoogle Scholar
  24. Brinkman J, Wijburg FA, Hollak CE et al (2005) Plasma chitotriosidase and CCL18: early biochemical surrogate markers in type B Niemann-Pick disease. J Inherit Metab Dis 28:13–20.  https://doi.org/10.1007/s10545-005-4416-9 PubMedCrossRefGoogle Scholar
  25. Burin MG, Scholz AP, Gus R et al (2004) Investigation of lysosomal storage diseases in nonimmune hydrops fetalis. Prenat Diagn 24:653–657PubMedCrossRefGoogle Scholar
  26. Casado M, Ferrer-López I, Ruiz-Sala P, Pérez-Cerdá C, Artuch R (2017) Urine oligosaccharide tests for the diagnosis of oligosaccharidoses. Rev Anal Chem 36.  https://doi.org/10.1515/revac-2016-0019
  27. Chamoles NA, Blanco M, Gaggioli D (2001a) Fabry disease: enzymatic diagnosis in dried blood spots on filter paper. Clin Chim Acta 308:195–196PubMedCrossRefGoogle Scholar
  28. Chamoles NA, Blanco MB, Iorcansky S, Gaggioli D, Spécola N, Casentini C (2001b) Retrospective diagnosis of GM1 gangliosidosis by use of a newborn-screening card. Clin Chem 47:2068PubMedGoogle Scholar
  29. Chamoles NA, Blanco MB, Gaggioli D, Casentini C (2001c) Hurler-like phenotype: enzymatic diagnosis in dried blood spots on filter paper. Clin Chem 47:2098–2102PubMedGoogle Scholar
  30. Chamoles NA, Blanco M, Gaggioli D (2001d) Diagnosis of alpha-L-iduronidase deficiency in dried blood spots on filter paper: the possibility of newborn diagnosis. Clin Chem 47:780–781 Erratum in: Clin Chem 47: 2192Google Scholar
  31. Chamoles NA, Blanco M, Gaggioli D, Casentini C (2002a) Gaucher and Niemann-Pick diseases--enzymatic diagnosis in dried blood spots on filter paper: retrospective diagnoses in newborn-screening cards. Clin Chim Acta 317:191–197PubMedCrossRefGoogle Scholar
  32. Chamoles NA, Blanco M, Gaggioli D, Casentini C (2002b) Tay-Sachs and Sandhoff diseases: enzymatic diagnosis in dried blood spots on filter paper: retrospective diagnoses in newborn-screening cards. Clin Chim Acta 318:133–137PubMedCrossRefGoogle Scholar
  33. Chen SC, Huang CH, Lai SJ et al (2016) Mechanism and inhibition of human UDP-GlcNAc 2-epimerase, the key enzyme in sialic acid biosynthesis. Sci Rep 6:23274.  https://doi.org/10.1038/srep23274 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chennamaneni NK, Kumar AB, Barcenas M et al (2014) Improved reagents for newborn screening of mucopolysaccharidosis types I, II, and VI by tandem mass spectrometry. Anal Chem 86:4508–4514.  https://doi.org/10.1021/ac5004135 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chien YH, Goldstein JL, Hwu WL et al (2015) Baseline urinary glucose tetrasaccharide concentrations in patients with infantile- and late-onset Pompe disease identified by newborn screening. JIMD Rep 19:67–73.  https://doi.org/10.1007/8904_2014_366 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Chuang CK, Lin HY, Wang TJ, Tsai CC, Liu HL, Lin SP (2014) A modified liquid chromatography/tandem mass spectrometry method for predominant disaccharide units of urinary glycosaminoglycans in patients with mucopolysaccharidoses. Orphanet J Rare Dis 9:135.  https://doi.org/10.1186/s13023-014-0135-3 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chuang WL, Pacheco J, Zhang XK et al (2013) Determination of psychosine concentration in dried blood spots from newborns that were identified via newborn screening to be at risk for Krabbe disease. Clin Chim Acta 419:73–76.  https://doi.org/10.1016/j.cca.2013.01.017 PubMedCrossRefGoogle Scholar
  38. Chuang WL, Pacheco J, Cooper S et al (2014) Lyso-sphingomyelin is elevated in dried blood spots of Niemann-Pick B patients. Mol Genet Metab 111:209–211.  https://doi.org/10.1016/j.ymgme.2013.11.012 PubMedCrossRefGoogle Scholar
  39. Chuang WL, Pacheco J, Cooper S et al (2015) Improved sensitivity of an acid sphingomyelinase activity assay using a C6:0 sphingomyelin substrate. Mol Genet Metab Rep 3:55–57.  https://doi.org/10.1016/j.ymgmr.2015.04.001 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Civallero G, Michelin K, de Mari J et al (2006) Twelve different enzyme assays on dried-blood filter paper samples for detection of patients with selected inherited lysosomal storage diseases. Clin Chim Acta 372:98–102PubMedCrossRefGoogle Scholar
  41. Collardeau-Frachon S, Cordier MP, Rossi M, Guibaud L, Vianey-Saban C (2016) Antenatal manifestations of inborn errors of metabolism: autopsy findings suggestive of a metabolic disorder. J Inherit Metab Dis 39:597–610.  https://doi.org/10.1007/s10545-016-9937-x PubMedCrossRefGoogle Scholar
  42. Cui Y, Colsch B, Afonso C et al (2008) Synthetic sulfogalactosylceramide (sulfatide) and its use for the mass spectrometric quantitative urinary determination in metachromatic leukodystrophies. Glycoconj J 25:147–155 Erratum in: Glycoconj J 25: 145. Alonso, Carlos [corrected to Afonso, Carlos]Google Scholar
  43. de Jong JG, Wevers RA, Laarakkers C, Poorthuis BJ (1989) Dimethylmethylene blue-based spectrophotometry of glycosaminoglycans in untreated urine: a rapid screening procedure for mucopolysaccharidoses. Clin Chem 35:1472–1477PubMedGoogle Scholar
  44. de Jong JG, Wevers RA, Liebrand-van Sambeek R (1992) Measuring urinary glycosaminoglycans in the presence of proteins: an improved screening procedure for mucopolysaccharidoses based on dimethylmethylene blue. Clin Chem 38:803–807PubMedGoogle Scholar
  45. de Ru MH, van der Tol L, van Vlies N et al (2013) Plasma and urinary levels of dermatan sulfate and heparan sulfate derived disaccharides after long-term enzyme replacement therapy (ERT) in MPS I: correlation with the timing of ERT and with total urinary excretion of glycosaminoglycans. J Inherit Metab Dis 36:246–255.  https://doi.org/10.1007/s10545-012-9538-2 Google Scholar
  46. Dekker N, van Dussen L, Hollak CE et al (2011) Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response. Blood 118:e118–e127.  https://doi.org/10.1182/blood-2011-05-352971 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Desnick RJ, Sweeley CC, Krivit W (1970) A method for the quantitative determination of neutral glycosphingolipids in urine sediment. J Lipid Res 11:31–37PubMedGoogle Scholar
  48. Dhondt JL, Farriaux JP, Cartigny B, Michalski JC (1982) Lactobionic acid: a pitfall in screening for oligosaccharidurias. J Inherit Metab Dis 5(Suppl. 1):7CrossRefGoogle Scholar
  49. Dische Z (1947) A new specific color reaction of hexuronic acids. J Biol Chem 167:189–198PubMedGoogle Scholar
  50. Dische Z, Rothschild C (1967) Two modifications of the carbazole reaction of hexuronic acids for the differentiation of polyuronides. Anal Biochem 1:125–130CrossRefGoogle Scholar
  51. Duffey TA, Bellamy G, Elliott S et al (2010a) A tandem mass spectrometry triplex assay for the detection of Fabry, Pompe, and mucopolysaccharidosis-I (Hurler). Clin Chem 56:1854–1861.  https://doi.org/10.1373/clinchem.2010.152009 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Duffey TA, Khaliq T, Scott CR, Turecek F, Gelb MH (2010b) Design and synthesis of substrates for newborn screening of Maroteaux-Lamy and Morquio A syndromes. Bioorg Med Chem Lett 20:5994–5996.  https://doi.org/10.1016/j.bmcl.2010.08.080 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Duffey TA, Sadilek M, Scott CR, Turecek F, Gelb MH (2010c) Tandem mass spectrometry for the direct assay of lysosomal enzymes in dried blood spots: application to screening newborns for mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Anal Chem 82:9587–9591.  https://doi.org/10.1021/ac102090v PubMedPubMedCentralCrossRefGoogle Scholar
  54. Echevarria L, Benistan K, Toussaint A et al (2016) X-chromosome inactivation in female patients with Fabry disease. Clin Genet 89:44–54.  https://doi.org/10.1111/cge.12613 PubMedCrossRefGoogle Scholar
  55. Elbin CS, Olivova P, Marashio CA et al (2011) The effect of preparation, storage and shipping of dried blood spots on the activity of five lysosomal enzymes. Clin Chim Acta 412:1207–1212.  https://doi.org/10.1016/j.cca.2011.03.012 PubMedCrossRefGoogle Scholar
  56. Escolar ML, Kiely BT, Shawgo E et al (2017) Psychosine, a marker of Krabbe phenotype and treatment effect. Mol Genet Metab 121:271–278.  https://doi.org/10.1016/j.ymgme.2017.05.015 PubMedCrossRefGoogle Scholar
  57. Farfel-Becker T, Vitner EB, Kelly SL et al (2014) Neuronal accumulation of glucosylceramide in a mouse model of neuronopathic Gaucher disease leads to neurodegeneration. Hum Mol Genet 15:843–854.  https://doi.org/10.1093/hmg/ddt468 CrossRefGoogle Scholar
  58. Ferraz MJ, Marques AR, Gaspar P et al (2016) Lyso-glycosphingolipid abnormalities in different murine models of lysosomal storage disorders. Mol Genet Metab 117:186–193.  https://doi.org/10.1016/j.ymgme.2015.12.006 PubMedCrossRefGoogle Scholar
  59. Filocamo M, Morrone A (2011) Lysosomal storage disorders: molecular basis and laboratory testing. Hum Genomics 5:156–169PubMedPubMedCentralCrossRefGoogle Scholar
  60. Froissart R, Cheillan D, Bouvier R et al (2005) Clinical, morphological, and molecular aspects of sialic acid storage disease manifesting in utero. J Med Genet 42:829–836PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fuller M, Rozaklis T, Ramsay SL et al (2004) Disease-specific markers for the mucopolysaccharidoses. Pediatr Res 56:733–738PubMedCrossRefGoogle Scholar
  62. Fuller M, Duplock S, Hein LK, Rigat BA, Mahuran DJ (2014) Liquid chromatography/electrospray ionisation-tandem mass spectrometry quantification of GM2 gangliosides in human peripheral cells and plasma. Anal Biochem 458:20–26.  https://doi.org/10.1016/j.ab.2014.04.018 PubMedCrossRefGoogle Scholar
  63. Ghomashchi F, Barcenas M, Turecek F, Scott CR, Gelb MH (2015) Reliable assay of acid sphingomyelinase deficiency with the mutation Q292K by tandem mass qpectrometry. Clin Chem 61:771–772.  https://doi.org/10.1373/clinchem.2014.236448 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Giese AK, Mascher H, Grittner U et al (2015) A novel, highly sensitive and specific biomarker for Niemann-Pick type C1 disease. Orphanet J Rare Dis 10:78.  https://doi.org/10.1186/s13023-015-0274-1 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Gimovsky AC, Luzi P, Berghella V (2015) Lysosomal storage disease as an etiology of nonimmune hydrops. Am J Obstet Gynecol 212:281–290.  https://doi.org/10.1016/j.ajog.2014.10.007 PubMedCrossRefGoogle Scholar
  66. Gray G, Claridge P, Jenkinson L, Green A (2007) Quantitation of urinary glycosaminoglycans using dimethylene blue as a screening technique for the diagnosis of mucopolysaccharidoses – an evaluation. Ann Clin Biochem 44:360–363PubMedCrossRefGoogle Scholar
  67. Groener JE, Poorthuis BJ, Kuiper S, Hollak CE, Aerts JM (2008) Plasma glucosylceramide and ceramide in type 1 Gaucher disease patients: correlations with disease severity and response to therapeutic intervention. Biochim Biophys Acta 1781:72–78PubMedCrossRefGoogle Scholar
  68. Guibaud L, Collardeau-Frachon S, Lacalm A et al (2017) Antenatal manifestations of inborn errors of metabolism: prenatal imaging findings. J Inherit Metab Dis 40:103–112.  https://doi.org/10.1007/s10545-016-9992-3 PubMedCrossRefGoogle Scholar
  69. Han M, Jun SH, Song SH, Park HD, Park KU, Song J (2014) Ultra-performance liquid chromatography/tandem mass spectrometry for determination of sulfatides in dried blood spots from patients with metachromatic leukodystrophy. Rapid Commun Mass Spectrom 28:587–594.  https://doi.org/10.1002/rcm.6823 PubMedCrossRefGoogle Scholar
  70. Han M, Jun SH, Song SH, Park HD, Park KU, Song J (2015) Ultra-performance liquid chromatography-tandem mass spectrometry measurement of leukocyte arylsulfatase A activity using a natural substrate. Ann Lab Med 35:165–168.  https://doi.org/10.3343/alm.2015.35.1.165 PubMedCrossRefGoogle Scholar
  71. Hinderlich S, Weidemann W, Yardeni T, Horstkorte R, Huizing M (2015) UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE): a master regulator of sialic acid synthesis. Top Curr Chem 366:97–137.  https://doi.org/10.1007/128_2013_464 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Huang Q, Zhou X, Liu D et al (2014) A new liquid chromatography/tandem mass spectrometry method for quantification of gangliosides in human plasma. Anal Biochem 455:26–34.  https://doi.org/10.1016/j.ab.2014.03.014 PubMedCrossRefGoogle Scholar
  73. Humbel R, Collart M (1975) Oligosaccharides in urine of patients with glycoprotein storage diseases. I. Rapid detection by thin-layer chromatography. Clin Chim Acta 60:143–145PubMedCrossRefGoogle Scholar
  74. Jiang X, Sidhu R, Porter FD et al (2011) A sensitive and specific LC-MS/MS method for rapid diagnosis of Niemann-pick C1 disease from human plasma. J Lipid Res 52:1435–1445.  https://doi.org/10.1194/jlr.D015735 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jiang X, Sidhu R, Mydock-McGrane et al (2016) Development of a bile acid-based newborn screen for Niemann-pick disease type C. Sci Transl Med 8:337ra63.  https://doi.org/10.1126/scitranslmed.aaf2326 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kannenberg F, Nofer J-R, Schulte E et al (2016) Determination of serum cholestane-3β,5α,6β-triol by gas chromatography–mass spectrometry for identification of Niemann-pick type C (NPC) disease. J Steroid Biochem Mol Biol 169:54–60.  https://doi.org/10.1016/j.jsbmb.2016.02.030 PubMedCrossRefGoogle Scholar
  77. Klinke G, Rohrbach M, Giugliani R et al (2015) LC-MS/MS based assay and reference intervals in children and adolescents for oxysterols elevated in Niemann–pick diseases. Clin Biochem 48:596–602.  https://doi.org/10.1016/j.clinbiochem.2015.03.007 PubMedCrossRefGoogle Scholar
  78. Kooper AJ, Janssens PM, de Groot AN et al (2006) Lysosomal storage diseases in nonimmune hydrops fetalis pregnancies. Clin Chim Acta 371:176–182PubMedCrossRefGoogle Scholar
  79. Kruth HS, Comly ME, Butler JD et al (1986) Type C Niemann-Pick disease. Abnormal metabolism of low density lipoprotein in homozygous and heterozygous fibroblasts. J Biol Chem 261:16769–16774PubMedGoogle Scholar
  80. Kruve A, Rebane R, Kipper K et al (2015a) Tutorial review on validation of liquid chromatography-mass spectrometry methods: part I. Anal Chim Acta 870:29–44.  https://doi.org/10.1016/j.aca.2015.02.017 PubMedCrossRefGoogle Scholar
  81. Kruve A, Rebane R, Kipper K et al (2015b) Tutorial review on validation of liquid chromatography-mass spectrometry methods: part II. Anal Chim Acta 870:8–28.  https://doi.org/10.1016/j.aca.2015.02.016 PubMedCrossRefGoogle Scholar
  82. Kubaski F, Suzuki Y, Orii K et al (2017a) Glycosaminoglycan levels in dried blood spots of patients with mucopolysaccharidoses and mucolipidoses. Mol Genet Metab 120:247–254.  https://doi.org/10.1016/j.ymgme.2016.12.010 PubMedCrossRefGoogle Scholar
  83. Kubaski F, Brusius-Facchin AC, Mason RW et al (2017b) Elevation of glycosaminoglycans in the amniotic fluid of a fetus with mucopolysaccharidosis VII. Prenat Diagn 37:435–439.  https://doi.org/10.1002/pd.5028 PubMedCrossRefGoogle Scholar
  84. Kubaski F, Mason RW, Nakatomi A et al (2017c) Newborn screening for mucopolysaccharidoses: a pilot study of measurement of glycosaminoglycans by tandem mass spectrometry. J Inherit Metab Dis 40:151–158.  https://doi.org/10.1007/s10545-016-9981-6 PubMedCrossRefGoogle Scholar
  85. Kuchar L, Ledvinová J, Hrebícek M et al (2009) Prosaposin deficiency and saposin B deficiency (activator-deficient metachromatic leukodystrophy): report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. Am J Med Genet A 149A:613–621.  https://doi.org/10.1002/ajmg.a.32712 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kuchař L, Asfaw B, Poupětová H, Honzíková J, Tureček F, Ledvinová J (2013) Direct tandem mass spectrometric profiling of sulfatides in dry urinary samples for screening of metachromatic leukodystrophy. Clin Chim Acta 425:153–159.  https://doi.org/10.1016/j.cca.2013.06.027 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kuchar L, Sikora J, Gulinello ME et al (2017) Quantitation of plasmatic lysosphingomyelin and lysosphingomyelin-509 for differential screening of Niemann-Pick A/B and C diseases. Anal Biochem 525:73–77.  https://doi.org/10.1016/j.ab.2017.02.019 PubMedCrossRefGoogle Scholar
  88. Kumar AB, Masi S, Ghomashchi F et al (2015) Tandem mass spectrometry has a larger analytical range than fluorescence assays of lysosomal enzymes: application to newborn screening and diagnosis of mucopolysaccharidoses Types II, IVA, and VI. Clin Chem 61:1363–1371.  https://doi.org/10.1373/clinchem.2015.242560 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Kurczynski TW, Kendzierski KS, Sewell AC, Kuczynski TW (1993) Urinary oligosaccharides in pregnant or lactating women: pitfall in screening. Clin Chem 39:2346–2347 Erratum in: Clin Chem 39: 2541Google Scholar
  90. la Marca G, Casetta B, Malvagia S, Guerrini R, Zammarchi E (2009) New strategy for the screening of lysosomal storage disorders: the use of the online trapping-and-cleanup liquid chromatography/mass spectrometry. Anal Chem 81:6113–6121.  https://doi.org/10.1021/ac900504s PubMedCrossRefGoogle Scholar
  91. Langereis EJ, Wagemans T, Kulik W et al (2015) A multiplex assay for the diagnosis of mucopolysaccharidoses and mucolipidoses. PLoS One 10:e0138622.  https://doi.org/10.1371/journal.pone.0138622 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lavoie P, Boutin M, Auray-Blais C (2013) Multiplex analysis of novel urinary lyso-Gb3-related biomarkers for Fabry disease by tandem mass spectrometry. Anal Chem 85:1743–1752.  https://doi.org/10.1021/ac303033v PubMedCrossRefGoogle Scholar
  93. Lefebvre G, Wehbe G, Heron D, Vautjoer Brouzes D, Choukroun JB, Darbois Y (1999) Recurrent nonimmune hydrops fetalis: a rare presentation of sialic acid storage disease. Genet Couns 10:277–284PubMedGoogle Scholar
  94. Li Y, Brockmann K, Turecek F, Scott CR, Gelb MH (2004a) Tandem mass spectrometry for the direct assay of enzymes in dried blood spots: application to newborn screening for Krabbe disease. Clin Chem 50:638–640PubMedCrossRefGoogle Scholar
  95. Li Y, Scott CR, Chamoles NA et al (2004b) Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin Chem 50:1785–1796PubMedPubMedCentralCrossRefGoogle Scholar
  96. Liao HC, Chan MJ, Yang CF et al (2017a) Mass spectrometry but not fluorimetry distinguishes affected and pseudodeficiency patients in newborn screening for Pompe disease. Clin Chem 63:1271–1277.  https://doi.org/10.1373/clinchem.2016.269027 PubMedCrossRefGoogle Scholar
  97. Liao HC, Spacil Z, Ghomashchi F et al (2017b) Lymphocyte galactocerebrosidase activity by LC-MS/MS for post-newborn screening evaluation of Krabbe disease. Clin Chem 63:1363–1369.  https://doi.org/10.1373/clinchem.2016.264952 PubMedCrossRefGoogle Scholar
  98. Lin N, Huang J, Violante S et al (2017) Liquid chromatography-tandem mass spectrometry assay of leukocyte acid α-glucosidase for post-newborn screening evaluation of Pompe disease. Clin Chem 63:842–851.  https://doi.org/10.1373/clinchem.2016.259036 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Liu Y, Yi F, Kumar AB et al (2017) Multiplex tandem mass spectrometry enzymatic activity assay for newborn screening of the mucopolysaccharidoses and type 2 neuronal ceroid lipofuscinosis. Clin Chem 63:1118–1126.  https://doi.org/10.1373/clinchem.2016.269167 PubMedCrossRefGoogle Scholar
  100. Lugowska A, Tylki-Szymańska A, Berger J, Molzer B (1997) Elevated sulfatide excretion in compound heterozygotes of metachromatic leukodystrophy and ASA-pseudodeficiency allele. Clin Biochem 30:325–331PubMedCrossRefGoogle Scholar
  101. Lukas J, Scalia S, Eichler S et al (2016) Functional and clinical consequences of novel α-galactosidase A mutations in Fabry disease. Hum Mutat 37:43–51.  https://doi.org/10.1002/humu.22910 PubMedCrossRefGoogle Scholar
  102. Machin GA (1989) Hydrops revisited: literature review of 1,414 cases published in the 1980s. Am J Med Genet 34:366–390PubMedCrossRefGoogle Scholar
  103. Manwaring V, Prunty H, Bainbridge K et al (2012) Urine analysis of glucose tetrasaccharide by HPLC; a useful marker for the investigation of patients with Pompe and other glycogen storage diseases. J Inherit Metab Dis 35:311–316.  https://doi.org/10.1007/s10545-011-9360-2 Erratum in: J Inherit Metab Dis 35: 369PubMedCrossRefGoogle Scholar
  104. Mazzacuva F, Mills P, Mills K et al (2016) Identification of novel bile acids as biomarkers for the early diagnosis of Niemann-pick C disease. FEBS Lett 590:1651–1662.  https://doi.org/10.1002/1873-3468.12196 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mechtler TP, Metz TF, Müller HG et al (2012) Short-incubation mass spectrometry assay for lysosomal storage disorders in newborn and high-risk population screening. J Chromatogr B Analyt Technol Biomed Life Sci 908:9–17.  https://doi.org/10.1016/j.jchromb.2012.09.012 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Michalski JC, Montreuil J, Strecker G (1983) A thin layer chromatographic technique for screening for sialuria. Clin Chim Acta 129:99–101PubMedCrossRefGoogle Scholar
  107. Millington DS (2017) Response to Gelb et al.: "comparison of tandem mass spectrometry to fluorimetry for newborn screening of LSDs". Mol Genet Metab Rep 12:98.  https://doi.org/10.1016/j.ymgmr.2017.06.008
  108. Millington DS, Bali DM (2017) Misinformation regarding tandem mass spectrometric vs fluorometric assays to screen newborns for LSDs. Mol Genet Metab Rep 11:72–73.  https://doi.org/10.1016/j.ymgmr.2017.04.009 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Mills K, Vellodi A, Morris P et al (2004) Cooper D, Morris M, Young E, Winchester B. Monitoring the clinical and biochemical response to enzyme replacement therapy in three children with Fabry disease. Eur J Pediatr 163:595–603PubMedGoogle Scholar
  110. Mills K, Morris P, Lee P et al (2005) Measurement of urinary CDH and CTH by tandem mass spectrometry in patients hemizygous and heterozygous for Fabry disease. J Inherit Metab Dis 28:35–48PubMedCrossRefGoogle Scholar
  111. Mirzaian M, Kramer G, Poorthuis BJ (2015a) Quantification of sulfatides and lysosulfatides in tissues and body fluids by liquid chromatography-tandem mass spectrometry. J Lipid Res 56:936–943.  https://doi.org/10.1194/jlr.M057232 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Mirzaian M, Wisse P, Ferraz MJ et al (2015b) Mass spectrometric quantification of glucosylsphingosine in plasma and urine of type 1 Gaucher patients using an isotope standard. Blood Cells Mol Dis 54:307–314.  https://doi.org/10.1016/j.bcmd.2015.01.006 PubMedCrossRefGoogle Scholar
  113. Mirzaian M, Wisse P, Ferraz MJ et al (2016) Accurate quantification of sphingosine-1-phosphate in normal and Fabry disease plasma, cells and tissues by LC-MS/MS with (13)C-encoded natural S1P as internal standard. Clin Chim Acta 459:36–44.  https://doi.org/10.1016/j.cca.2016.05.017 PubMedCrossRefGoogle Scholar
  114. Mirzaian M, Wisse P, Ferraz MJ et al (2017) Simultaneous quantitation of sphingoid bases by UPLC-ESI-MS/MS with identical 13C-encoded internal standards. Clin Chim Acta 466:178–184.  https://doi.org/10.1016/j.cca.2017.01.014 PubMedCrossRefGoogle Scholar
  115. Montreuil J, Biserte G, Strecker G, Spik G, Fontaine G, Farriaux JP (1968) Description of a new type of melituria, called sialuria. Clin Chim Acta 1:61–69 French CrossRefGoogle Scholar
  116. Motta M, Tatti M, Furlan F et al (2016) Clinical, biochemical and molecular characterization of prosaposin deficiency. Clin Genet 90:220–229.  https://doi.org/10.1111/cge.12753 PubMedCrossRefGoogle Scholar
  117. Murugesan V, Chuang WL, Liu J et al (2016) Glucosylsphingosine is a key biomarker of Gaucher disease. Am J Hematol 91:1082–1089.  https://doi.org/10.1002/ajh.24491 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Niemann M, Rolfs A, Störk S et al (2014) Gene mutations versus clinically relevant phenotypes: lyso-Gb3 defines Fabry disease. Circ Cardiovasc Genet 7:8–16.  https://doi.org/10.1161/CIRCGENETICS.113.000249 PubMedCrossRefGoogle Scholar
  119. Nowak A, Mechtler TP, Desnick RJ, Kasper DC (2017a) Plasma LysoGb3: a useful biomarker for the diagnosis and treatment of Fabry disease heterozygotes. Mol Genet Metab 120:57–61.  https://doi.org/10.1016/j.ymgme.2016.10.006 PubMedCrossRefGoogle Scholar
  120. Nowak A, Mechtler T, Kasper DC, Desnick RJ (2017b) Correlation of Lyso-Gb3 levels in dried blood spots and sera from patients with classic and later-onset Fabry disease. Mol Genet Metab 121:320–324.  https://doi.org/10.1016/j.ymgme.2017.06.006 PubMedCrossRefGoogle Scholar
  121. Nowak A, Mechtler TP, Hornemann T et al (2017c) Genotype, phenotype and disease severity reflected by serum LysoGb3 levels in patients with Fabry disease. Mol Genet Metab S1096-7192(17):30328–30321.  https://doi.org/10.1016/j.ymgme.2017.07.002 Google Scholar
  122. Oberholzer K, Sewell AC (1990) Unique oligosaccharide (apparently glucotetrasaccharide) in urine of patients with glycogen storage diseases. Clin Chem 36:1381PubMedGoogle Scholar
  123. Oguma T, Toyoda H, Toida T, Imanari T (2001a) Analytical method of heparan sulfates using high performance liquid chromatography/turbo ionspray ionization tandem mass spectrometry. J Chromatogr B Biomed Sci App 754:153–159CrossRefGoogle Scholar
  124. Oguma T, Toyoda H, Toida T, Imanari T (2001b) Analytical method of keratan sulfates by high performance liquid chromatography/turbo ionspray ionization mass spectrometry. Anal Biochem 290:68–73PubMedCrossRefGoogle Scholar
  125. Oguma T, Toyoda H, Toida T, Imanari T (2001c) Analytical method of chondroitin/dermatan sulfates using high performance liquid chromatography/turbo ionspray ionization mass spectrometry: application to analyses of the tumor tissue section glass slides. Biomed Chromatogr 5:356–362CrossRefGoogle Scholar
  126. Oguma T, Tomatsu S, Montano AM, Okazaki O (2007) Analytical method for the determination of disaccharides derived from keratan, heparan, and dermatan sulfates in human serum and plasma by high-performance liquid chromatography/turbo ionspray ionization tandem mass spectrometry. Anal Biochem 368:79–86PubMedCrossRefGoogle Scholar
  127. Ombrone D, Giocaliere E, Forni G, Malvagia S, la Marca G (2016) Expanded newborn screening by mass spectrometry: new tests, future perspectives. Mass Spectrom Rev 35:71–84.  https://doi.org/10.1002/mas.21463 PubMedCrossRefGoogle Scholar
  128. Pajares S, Arias A, García-Villoria J et al (2015) Cholestane-3β,5α,6β-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency. J Lipid Res 56:1926–1935.  https://doi.org/10.1194/jlr.M060343 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Paschke E, Trinkl G, Erwa W, Pavelka M, Mutz I, Roscher A (1986) Infantile type of sialic acid storage disease with sialuria. Clin Genet 29:417–424PubMedCrossRefGoogle Scholar
  130. Patterson MC, Clayton P, Gissen P et al (2017) Recommendations for the detection and diagnosis of Niemann-pick disease type C. Neurol Clin Pract.  https://doi.org/10.1212/CPJ.0000000000000399
  131. Peake RW, Bodamer OA (2017) Newborn screening for lysosomal storage disorders. J Pediatr Genet 6:51–60.  https://doi.org/10.1055/s-0036-1593843 PubMedCrossRefGoogle Scholar
  132. Pettazzoni M, Piraud M, Froissart R et al (2015) LC-MS/MS lysosphingolipids measurement in plasma for the screening and follow-up of lysosomal storage diseases. J Inherit Metab Dis 38(Suppl 1):S56Google Scholar
  133. Pettazzoni M, Froissart R, Pagan C et al (2017) LC-MS/MS multiplex analysis of lysosphingolipids in plasma and amniotic fluid: a novel tool for the screening of sphingolipidoses and Niemann-pick type C disease. PLoS One 12:e0181700.  https://doi.org/10.1371/journal.pone.0181700 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Piraud M, Maire I (1990) Interference of amikacin in thin-layer chromatographic screening of urine for oligosaccharidosis. Clin Chem 36:809PubMedGoogle Scholar
  135. Piraud M, Boyer S, Mathieu M, Maire I (1993) Diagnosis of mucopolysaccharidoses in a clinically selected population by urinary glycosaminoglycan analysis: a study of 2,000 urine samples. Clin Chim Acta 221:171–181PubMedCrossRefGoogle Scholar
  136. Piraud M, Froissart R, Mandon G, Bernard A, Maire I (1996) Amniotic fluid for screening of lysosomal storage diseases presenting in utero (mainly as nonimmune hydrops fetalis). Clin Chim Acta 248:143–155PubMedCrossRefGoogle Scholar
  137. Piraud M, Vianey-Saban C, Petritis K, Elfakir C, Steghens JP, Bouchu D (2005) Ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometric analysis of 76 underivatized amino acids of biological interest: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Rapid Commun Mass Spectrom 19:1587–1602PubMedCrossRefGoogle Scholar
  138. Piraud M, Maire I, Froissart R (2010) Contribution of the measurement of globotriaosylceramide in urine to the diagnosis and follow-up of Fabry disease. Rev Med Interne 31(Suppl 2):S270–S274.  https://doi.org/10.1016/S0248-8663(10)70026-6. French PubMedCrossRefGoogle Scholar
  139. Piraud M, Pettazzoni M, Pagan C, Cheillan D, Froissart R, Vianey-Saban C (2015) Measurement of lysosphingolipids and their isoforms by LC-MS/MS in plasma, urine and amniotic fluid: application to screening of sphingolipidoses. Poster P-54, 20th ESGLD Workshop and graduate course, Sep 30 – Oct 4 2015, Pozzuoli, ItalyGoogle Scholar
  140. Piraud M, Pettazzoni M, Menegaut L et al (2017) Development os a new MS/MS method for urine and amniotic fluid screening of oligosaccharidoses. Rapid Commun Mass Spectrom 31:1–13.  https://doi.org/10.1002/rcm.7860 CrossRefGoogle Scholar
  141. Polo G, Burlina AP, Kolamunnage TB et al (2017) Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS/MS. Clin Chem Lab Med 55:403–414.  https://doi.org/10.1515/cclm-2016-0340 PubMedCrossRefGoogle Scholar
  142. Porter FD, Scherrer DE, Lanier MH et al (2010) Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease. Sci Transl Med 2:56ra81.  https://doi.org/10.1126/scitranslmed.3001417 PubMedPubMedCentralCrossRefGoogle Scholar
  143. Provençal P, Boutin M, Dworski S, Au B, Medin JA, Auray-Blais C (2016) Relative distribution of Gb3 isoforms/analogs in NOD/SCID/Fabry mice tissues determined by tandem mass spectrometry. Bioanalysis 8:1793–1807.  https://doi.org/10.4155/bio-2016-0116 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Ramsay SL, Meikle PJ, Hopwood JJ (2003) Determination of monosaccharides and disaccharides in mucopolysaccharidoses patients by electrospray ionisation mass spectrometry. Mol Genet Metab 78:193–204PubMedCrossRefGoogle Scholar
  145. Ramsay SL, Meikle PJ, Hopwood JJ, Clements PR (2005) Profiling oligosaccharidurias by electrospray tandem mass spectrometry: quantifying reducing oligosaccharides. Anal Biochem 345:30–46PubMedCrossRefGoogle Scholar
  146. Raymond K, Rinaldo P (2013) From art to science: oligosaccharide analysis by maldi-tof mass spectrometry finally replaces 1-dimensional thin-layer chromatography. Clin Chem 59:1297–1298.  https://doi.org/10.1373/clinchem.2013.208793 PubMedCrossRefGoogle Scholar
  147. Rendlund M, Chester MA, Lundblad A et al (1979) Increased urinary excretion of free N-acetylneuraminic acid in thirteen patients with Salla disease. Eur J Biochem 101:245–250CrossRefGoogle Scholar
  148. Reunert J, Fobker M, Kannenberg F et al (2015) Rapid diagnosis of 83 patients with Niemann Pick type C disease and related cholesterol transport disorders by cholestantriol screening. EBioMedicine 4:170–175.  https://doi.org/10.1016/j.ebiom.2015.12.018 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Ries M, Schaefer E, Lührs T et al (2006) Critical assessment of chitotriosidase analysis in the rational laboratory diagnosis of children with Gaucher disease and Niemann-Pick disease type A/B and C. J Inherit Metab Dis 29:647–652PubMedCrossRefGoogle Scholar
  150. Roboz J, Suttajit M, Bekesi JG (1981) Elimination of 2-deoxyribose interference in the thiobarbituric acid determination of N-acetylneuraminic acid in tumor cells by pH-dependent extraction with cyclohexanone. Anal Biochem 110:380–388PubMedCrossRefGoogle Scholar
  151. Rolfs A, Giese AK, Grittner U et al (2013) Glucosylsphingosine is a highly sensitive and specific biomarker for primary diagnostic and follow-up monitoring in Gaucher disease in a nonJewish, Caucasian cohort of Gaucher disease patients. PLoS One 8:e79732.  https://doi.org/10.1371/journal.pone.0079732 PubMedPubMedCentralCrossRefGoogle Scholar
  152. Romanello M, Zampieri S, Bortolotti N et al (2016) Comprehensive evaluation of plasma 7-ketocholesterol and cholestan-3β,5α,6β-Triol in an Italian cohort of patients affected by Niemann-Pick disease due to NPC1 and SMPD1 mutations. Clin Chim Acta 455:39–45.  https://doi.org/10.1016/j.cca.2016.01.003 PubMedCrossRefGoogle Scholar
  153. Rombach SM, Dekker N, Bouwman MG et al (2010) Plasma globotriaosylsphingosine: diagnostic value and relation to clinical manifestations of Fabry disease. Biochim Biophys Acta 1802:741–748.  https://doi.org/10.1016/j.bbadis.2010.05.003 PubMedCrossRefGoogle Scholar
  154. Rozaklis T, Ramsay SL, Whitfield PD, Ranieri E, Hopwood JJ, Meikle PJ (2002) Determination of oligosaccharides in Pompe disease by electrospray ionization tandem mass spectrometry. Clin Chem 48:131–139PubMedGoogle Scholar
  155. Saville JT, Smith NJ, Fletcher JM, Fuller M (2017) Quantification of plasma sulfatides by mass spectrometry: Utility for metachromatic leukodystrophy. Anal Chim Acta 955:79–85.  https://doi.org/10.1016/j.aca.2016.12.002 PubMedCrossRefGoogle Scholar
  156. Schielen PCJI, Kemper EA, Gelb MH (2017) Newborn screening for lysosomal storage diseases: a concise review of the literature on screening methods, therapeutic possibilities and regional programs. Int J Neonatal Screen 3.  https://doi.org/10.3390/ijns3020006
  157. Scott CR, Elliott S, Buroker N et al (2013) Identification of infants at risk for developing Fabry, Pompe, or mucopolysaccharidosis-I from newborn blood spots by tandem mass spectrometry. J Pediatr 163:498–503.  https://doi.org/10.1016/j.jpeds.2013.01.031 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Sevin C, Verot L, Benraiss A et al (2007) Partial cure of established disease in an animal model of metachromatic leukodystrophy after intracerebral adeno-associated virus-mediated gene transfer. Gene Ther 14:405–414PubMedCrossRefGoogle Scholar
  159. Sista RS, Wang T, Wu N et al (2013) Multiplex newborn screening for Pompe, Fabry, Hunter, Gaucher, and Hurler diseases using a digital microfluidic platform. Clin Chim Acta 424:12–18.  https://doi.org/10.1016/j.cca.2013.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Smid BE, van der Tol L, Cecchi F et al (2014) Uncertain diagnosis of Fabry disease: consensus recommendation on diagnosis in adults with left ventricular hypertrophy and genetic variants of unknown significance. Int J Cardiol 177:400–408.  https://doi.org/10.1016/j.ijcard.2014.09.001 PubMedCrossRefGoogle Scholar
  161. Smid BE, van der Tol L, Biegstraaten M, Linthorst GE, Hollak CE, Poorthuis BJ (2015) Plasma globotriaosylsphingosine in relation to phenotypes of Fabry disease. J Med Genet 52:262–268.  https://doi.org/10.1136/jmedgenet-2014-102872 PubMedCrossRefGoogle Scholar
  162. Spáčil Z, Elliott S, Reeber SL, Gelb MH, Scott CR, Tureček F (2011) Comparative triplex tandem mass spectrometry assays of lysosomal enzyme activities in dried blood spots using fast liquid chromatography: application to newborn screening of Pompe, Fabry, and Hurler diseases. Anal Chem 83:4822–4828.  https://doi.org/10.1021/ac200417u PubMedPubMedCentralCrossRefGoogle Scholar
  163. Spacil Z, Tatipaka H, Barcenas M, Scott CR, Turecek F, Gelb MH (2013) High-throughput assay of 9 lysosomal enzymes for newborn screening. Clin Chem 59:502–511.  https://doi.org/10.1373/clinchem.2012.189936 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Spacil Z, Babu Kumar A, Liao HC et al (2016) Sulfatide analysis by mass spectrometry for screening of metachromatic leukodystrophy in dried blood and urine samples. Clin Chem 62:279–286.  https://doi.org/10.1373/clinchem.2015.245159 PubMedCrossRefGoogle Scholar
  165. Spada M, Kasper D, Pagliardini V, Biamino E, Giachero S, Porta F (2017) Metabolic progression to clinical phenotype in classic Fabry disease. Ital J Pediatr 43:1.  https://doi.org/10.1186/s13052-016-0320-1 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Stevenson RE, Lubinsky M, Taylor HA, Wenger DA, Schroer RJ, Olmstead PM (1983) Sialic acid storage disease with sialuria: clinical and biochemical features in the severe infantile type. Pediatrics 72:441–449PubMedGoogle Scholar
  167. Sugiyama E, Hara A, Uemura K (1999) A quantitative analysis of serum sulfatide by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with delayed ion extraction. Anal Biochem 274:90–97PubMedCrossRefGoogle Scholar
  168. Supriya M, De T, Christopher R (2017) Effect of temperature on lysosomal enzyme activity during preparation and storage of dried blood spots. J Clin Lab Anal.  https://doi.org/10.1002/jcla.22220
  169. Svennerholm L, Vanier MT, Månsson JE (1980) Krabbe disease: a galactosylsphingosine (psychosine) lipidosis. J Lipid Res 21:53–64PubMedGoogle Scholar
  170. Tan MA, Fuller M, Zabidi-Hussin ZA, Hopwood JJ, Meikle PJ (2010) Biochemical profiling to predict disease severity in metachromatic leukodystrophy. Mol Genet Metab 99:142–148.  https://doi.org/10.1016/j.ymgme.2009.09.006 PubMedCrossRefGoogle Scholar
  171. Tomatsu S, Fujii T, Fukushi M et al (2013) Newborn screening and diagnosis of mucopolysaccharidoses. Mol Genet Metab 110:42–53.  https://doi.org/10.1016/j.ymgme.2013.06.007 PubMedPubMedCentralCrossRefGoogle Scholar
  172. Tomatsu S, Shimada T, Mason RW et al (2014) Assay for glycosaminoglycans by tandem mass spectrometry and its applications. J Anal Bioanal Tech 2014(Suppl 2):006PubMedPubMedCentralGoogle Scholar
  173. Tondeur M, Libert J, Vamos E, Van Hoof F, Thomas GH, Strecker G (1982) Infantile form of sialic acid storage disorder: clinical, ultrastructural, and biochemical studies in two siblings. Eur J Pediatr 139:142–147PubMedCrossRefGoogle Scholar
  174. Trim PJ, Lau AA, Hopwood JJ, Snel MF (2014) A simple method for early age phenotype confirmation using toe tissue from a mouse model of MPS IIIA. Rapid Commun Mass Spectrom 28:933–938.  https://doi.org/10.1002/rcm.6861 PubMedCrossRefGoogle Scholar
  175. Turgeon CT, Orsini JJ, Sanders KA et al (2015) Measurement of psychosine in dried blood spots--a possible improvement to newborn screening programs for Krabbe disease. J Inherit Metab Dis 38:923–929.  https://doi.org/10.1007/s10545-015-9822-z PubMedCrossRefGoogle Scholar
  176. Valianpour F, Abeling NG, Duran M, Huijmans JG, Kulik W (2004) Quantification of free sialic acid in urine by HPLC-electrospray tandem mass spectrometry: a tool for the diagnosis of sialic acid storage disease. Clin Chem 50:403–409PubMedCrossRefGoogle Scholar
  177. van den Bosch J, Oemardien LF, Srebniak MI et al (2011) Prenatal screening of sialic acid storage disease and confirmation in cultured fibroblasts by LC-MS/MS. J Inherit Metab Dis 34:1069–1073.  https://doi.org/10.1007/s10545-011-9351-3 PubMedPubMedCentralCrossRefGoogle Scholar
  178. van der Ham M, Prinsen BH, Huijmans JG et al (2007) Quantification of free and total sialic acid excretion by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 848:251–257PubMedCrossRefGoogle Scholar
  179. van der Ham M, de Koning TJ, Lefeber D, Fleer A, Prinsen BH, de Sain-van der Velden MG (2010) Liquid chromatography-tandem mass spectrometry assay for the quantification of free and total sialic acid in human cerebrospinal fluid. J Chromatogr B Analyt Technol Biomed Life Sci 878:1098–1102.  https://doi.org/10.1016/j.jchromb.2010.03.020 PubMedCrossRefGoogle Scholar
  180. van der Tol L, Smid BE, Poorthuis BJ et al (2014) A systematic review on screening for Fabry disease: prevalence of individuals with genetic variants of unknown significance. J Med Genet 51:1–9.  https://doi.org/10.1136/jmedgenet-2013-101857 PubMedCrossRefGoogle Scholar
  181. van Maldergem L, Jauniaux E, Fourneau C, Gillerot Y (1992) Genetic causes of hydrops fetalis. Pediatrics 89:81–86PubMedGoogle Scholar
  182. Vanier MT (2015) Complex lipid trafficking in Niemann-Pick disease type C. J Inherit Metab Dis 38:187–199.  https://doi.org/10.1007/s10545-014-9794-4 PubMedCrossRefGoogle Scholar
  183. Vanier MT, Gissen P, Bauer P et al (2016) Diagnostic tests for Niemann-Pick disease type C (NP-C): A critical review. Mol Genet Metab 118:244–254.  https://doi.org/10.1016/j.ymgme.2016.06.004 PubMedCrossRefGoogle Scholar
  184. Verheijen FW, Verbeek E, Aula N et al (1999) A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genet 23:462–465PubMedCrossRefGoogle Scholar
  185. Vianey-Saban C, Acquaviva C, Cheillan D et al (2016) Antenatal manifestations of inborn errors of metabolism: biological diagnosis. J Inherit Metab Dis 39:611–624.  https://doi.org/10.1007/s10545-016-9947-8 PubMedCrossRefGoogle Scholar
  186. Vite CH, Bagel JH, Swain GP et al (2015) Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-pick type C1 disease. Sci Transl Med 7:276ra226.  https://doi.org/10.1126/scitranslmed.3010101 CrossRefGoogle Scholar
  187. Wang D, Eadala B, Sadilek M et al (2005) Tandem mass spectrometric analysis of dried blood spots for screening of mucopolysaccharidosis I in newborns. Clin Chem 51:898–900PubMedCrossRefGoogle Scholar
  188. Wang D, Wood T, Sadilek M, Scott CR, Turecek F, Gelb MH (2007) Tandem mass spectrometry for the direct assay of enzymes in dried blood spots: application to newborn screening for mucopolysaccharidosis II (Hunter disease). Clin Chem 53:137–140PubMedCrossRefGoogle Scholar
  189. Warren L (1959) The thiobarbituric acid assay of sialic acids. J Biol Chem 234:1971–1975PubMedGoogle Scholar
  190. Welford RW, Garzotti M, Marques Lourenço C et al (2014) Plasma lysosphingomyelin demonstrates great potential as a diagnostic biomarker for Niemann-Pick disease type C in a retrospective study. PLoS One 9:e114669.  https://doi.org/10.1371/journal.pone.0114669 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Wessler E (1968) Analytical and preparative separation of acidic glycosaminoglycans by electrophoresis in barium acetate. Anal Biochem 26:439–444PubMedCrossRefGoogle Scholar
  192. Whitfield PD, Sharp PC, Johnson DW, Nelson P, Meikle PJ (2001) Characterization of urinary sulfatides in metachromatic leukodystrophy using electrospray ionization-tandem mass spectrometry. Mol Genet Metab 73:30–37PubMedCrossRefGoogle Scholar
  193. Whitley CB, Ridnour MD, Draper KA, Dutton CM, Neglia JP (1989a) Diagnostic test for mucopolysaccharidosis. I. Direct method for quantifying excessive urinary glycosaminoglycan excretion. Clin Chem 35:374–379PubMedGoogle Scholar
  194. Whitley CB, Draper KA, Dutton CM, Brown PA, Severson SL, France LA (1989b) Diagnostic test for mucopolysaccharidosis. II. Rapid quantification of glycosaminoglycan in urine samples collected on a paper matrix. Clin Chem 35:2074–2081PubMedGoogle Scholar
  195. Whybra C, Mengel E, Russo A et al (2012) Lysosomal storage disorder in nonimmunological hydrops fetalis (NIHF): more common than assumed? Report of four cases with transient NIHF and a review of the literature. Orphanet J Rare Dis 7:86.  https://doi.org/10.1186/1750-1172-7-86 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Winchester B (2012) Classification of lysosomal storage diseases. In: Mehta A, Winchester B eds. Lysosomal storage disorders, a practical guide. Wiley-Blackwell, pp 37–46Google Scholar
  197. Wusteman FS, Lloyd AG, Dodgson KS (1966) Thin-layer chromatography and the rapid identification of common acidic glycosaminoglycans. J Chromatogr 21:32–39PubMedCrossRefGoogle Scholar
  198. Young SP, Stevens RD, An Y, Chen YT, Millington DS (2003) Analysis of a glucose tetrasaccharide elevated in Pompe disease by stable isotope dilution-electrospray ionization tandem mass spectrometry. Anal Biochem 316:175–180PubMedCrossRefGoogle Scholar
  199. Young SP, Zhang H, Corzo D et al (2009) Long-term monitoring of patients with infantile-onset Pompe disease on enzyme replacement therapy using a urinary glucose tetrasaccharide biomarker. Genet Med 11:536–541.  https://doi.org/10.1097/GIM.0b013e3181a87867 PubMedCrossRefGoogle Scholar
  200. Young SP, Piraud M, Goldstein JL et al (2012) Assessing disease severity in Pompe disease: the roles of a urinary glucose tetrasaccharide biomarker and imaging techniques. Am J Med Genet C Semin Med Genet 160C:50–58.  https://doi.org/10.1002/ajmg.c.31320 PubMedCrossRefGoogle Scholar
  201. Zampini L, Padella L, Marchesiello RL et al (2017) Importance of combined urinary procedure for the diagnosis of mucopolysaccharidoses. Clin Chim Acta 464:165–169.  https://doi.org/10.1016/j.cca.2016.11.024 PubMedCrossRefGoogle Scholar
  202. Zhang H, Young SP, Auray-Blais C, Orchard PJ, Tolar J, Millington DS (2011) Analysis of glycosaminoglycans in cerebrospinal fluid from patients with mucopolysaccharidoses by isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry. Clin Chem 57:1005–1012.  https://doi.org/10.1373/clinchem.2010.161141 PubMedCrossRefGoogle Scholar
  203. Zhang H, Wood T, Young SP, Millington DS (2015) A straightforward, quantitative ultra-performance liquid chromatography-tandem mass spectrometric method for heparan sulfate, dermatan sulfate and chondroitin sulfate in urine: an improved clinical screening test for mucopolysaccharidoses. Mol Genet Metab 114:123–128.  https://doi.org/10.1016/j.ymgme.2014.09.009 PubMedCrossRefGoogle Scholar
  204. Zhao S, Zhan X, Wang Y et al (2017) Large-scale study of clinical and biochemical characteristics of Chinese patients diagnosed with Krabbe disease. Clin Genet.  https://doi.org/10.1111/cge.13071
  205. Zheng K, Ji A, Chung LL, Culm-Merdek K, Liu H, Richards S, Sung C (2016) Enhancement of human plasma glucosylceramide assay sensitivity using delipidized plasma. Mol Genet Metab Rep 8:77–79.  https://doi.org/10.1016/j.ymgmr.2016.07.004 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© SSIEM 2018

Authors and Affiliations

  • Monique Piraud
    • 1
  • Magali Pettazzoni
    • 1
  • Pamela Lavoie
    • 2
  • Séverine Ruet
    • 1
  • Cécile Pagan
    • 1
  • David Cheillan
    • 1
  • Philippe Latour
    • 3
  • Christine Vianey-Saban
    • 1
  • Christiane Auray-Blais
    • 2
  • Roseline Froissart
    • 1
  1. 1.Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie EstHospices Civils de LyonBron cedexFrance
  2. 2.Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santéUniversité de SherbrookeSherbrookeCanada
  3. 3.Unité de Neurogénétique Moléculaire, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie EstHospices Civils de LyonLyonFrance

Personalised recommendations