Skip to main content
Log in

Characterisation of the T cell and dendritic cell repertoire in a murine model of mucopolysaccharidosis I (MPS I)

  • Original Article
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Background

Mucopolysaccharidosis I (MPS I) is a metabolic disorder caused by α-L-Iduronidase (IDUA) deficiency, resulting in lysosomal accumulation of heparan (HS) and dermatan sulphate (DS). This has been reported in microglia, yet currently the effect of IDUA deficiency on T cells and dendritic cells (DC) and their functionality in disease pathogenesis remains unclear.

Methods

Peripheral blood was collected from 3 month old C57BL/6 MPS I (n = 11) and wildtype (WT) (n = 6) mice. T cell and DC phenotype and functional characteristics were identified by flow cytometry.

Results

MPS I mice exhibited a reduction in DC (p = <0.001) along with CD8+ cytotoxic (p = 0.01) and CD4+ T helper (p = 0.032) cells, compared to WT controls. MPS I DC displayed a significant decrease in cell surface CD123 (p = 0.02) and CD86 (p = 0.006) expression. Furthermore, CD45RB expression was significantly reduced on T helper cells in the MPS I population (p = 0.019).

Conclusion

We report a reduction in circulating DC and T cells in the MPS I mouse; indicative of adaptive immune dysfunction. DC reduction may occur in response to down-regulation of the IL-3 receptor (CD123), necessary for DC survival. We also report down-regulation of cell surface CD86, a molecule required for T cell co-stimulation. T helper cell down-regulation of CD45RB is redolent of an anti-inflammatory phenotype with poor proliferative capacity. The definitive causes of our findings and the consequences and role that these findings play in the pathogenesis of MPS are unclear, but may be in response to lysosomal storage of unmetabolized HS and DS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen MH, Schrama D et al (2006) Cytotoxic T cells. J Invest Dermatol 126(1):32–41

    Article  PubMed  CAS  Google Scholar 

  • Annacker O, Burlen-Defranoux O et al (2000) Regulatory CD4 T cells control the size of the peripheral activated/memory CD4 T cell compartment. J Immunol 164(7):3573–3580

    PubMed  CAS  Google Scholar 

  • Ausseil J, Desmaris N et al (2008) Early neurodegeneration progresses independently of microglial activation by heparan sulfate in the brain of mucopolysaccharidosis IIIB mice. PLoS One 3(5):e2296

    Article  PubMed  Google Scholar 

  • Beissert S, Schwarz A et al (2006) Regulatory T cells. J Invest Dermatol 126(1):15–24

    Article  PubMed  CAS  Google Scholar 

  • Bossi G, Griffiths GM (1999) Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med 5(1):90–96

    Article  PubMed  CAS  Google Scholar 

  • Boya P, Gonzalez-Polo RA et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25(3):1025–1040

    Article  PubMed  CAS  Google Scholar 

  • Burman C, Ktistakis NT (2010)Autophagosome formation in mammalian cells. Semin Immunopathol 32(4):397–413

    Google Scholar 

  • Castaneda JA, Lim MJ et al (2008) Immune system irregularities in lysosomal storage disorders. Acta Neuropathol 115(2):159–174

    Article  PubMed  CAS  Google Scholar 

  • Clark R, Kupper T (2005) Old meets new: the interaction between innate and adaptive immunity. J Invest Dermatol 125(4):629–637

    Article  PubMed  CAS  Google Scholar 

  • Clarke LA, Russell CS et al (1997) Murine mucopolysaccharidosis type I: targeted disruption of the murine alpha-L-iduronidase gene. Hum Mol Genet 6(4):503–511

    Article  PubMed  CAS  Google Scholar 

  • Constantopoulos G, Dekaban AS (1978) Neurochemistry of the mucopolysaccharidoses: brain lipids and lysosomal enzymes in patients with four types of mucopolysaccharidosis and in normal controls. J Neurochem 30(5):965–973

    Article  PubMed  CAS  Google Scholar 

  • Curtsinger JM, Schmidt CS et al (1999) Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. J Immunol 162(6):3256–3262

    PubMed  CAS  Google Scholar 

  • Dahlen E, Hedlund G et al (2000) Low CD86 expression in the nonobese diabetic mouse results in the impairment of both T cell activation and CTLA-4 up-regulation. J Immunol 164(5):2444–2456

    PubMed  CAS  Google Scholar 

  • Dani A, Chaudhry A et al (2004) The pathway for MHCII-mediated presentation of endogenous proteins involves peptide transport to the endo-lysosomal compartment. J Cell Sci 117(Pt 18):4219–4230

    Article  PubMed  CAS  Google Scholar 

  • Davies JD, O’Connor E et al (1999) CD4+ CD45RB low-density cells from untreated mice prevent acute allograft rejection. J Immunol 163(10):5353–5357

    PubMed  CAS  Google Scholar 

  • de Groot RP, Coffer PJ et al (1998) Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family. Cell Signal 10(9):619–628

    Article  PubMed  Google Scholar 

  • Eskelinen EL, Saftig P (2009) Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793(4):664–673

    Article  PubMed  CAS  Google Scholar 

  • Fleischer J, Soeth E et al (1996) Differential expression and function of CD80 (B7-1) and CD86 (B7-2) on human peripheral blood monocytes. Immunology 89(4):592–598

    Article  PubMed  CAS  Google Scholar 

  • Gimmi CD, Freeman GJ et al (1993) Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation. Proc Natl Acad Sci U S A 90(14):6586–6590

    Article  PubMed  CAS  Google Scholar 

  • Groux H, O’Garra A et al (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389(6652):737–742

    Article  PubMed  CAS  Google Scholar 

  • Guermonprez P, Valladeau J et al (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667

    Article  PubMed  CAS  Google Scholar 

  • Hara M, Kingsley CI et al (2001) IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 166(6):3789–3796

    PubMed  CAS  Google Scholar 

  • Harris NL, Ronchese F (1999) The role of B7 costimulation in T-cell immunity. Immunol Cell Biol 77(4):304–311

    Article  PubMed  CAS  Google Scholar 

  • Holley RJ, Deligny A et al (2011) Mucopolysaccharidosis type I, unique structure of accumulated heparan sulfate and increased N-sulfotransferase activity in mice lacking alpha-l-iduronidase. J Biol Chem 286(43): 37515-24

    Google Scholar 

  • Joffre O, Nolte MA et al (2009) Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol Rev 227(1):234–247

    Article  PubMed  CAS  Google Scholar 

  • Johnson DE (1998) Regulation of survival pathways by IL-3 and induction of apoptosis following IL-3 withdrawal. Front Biosci 3:d313–d324

    PubMed  CAS  Google Scholar 

  • Lim B, Sutherland RM et al (2006) Targeting CD45RB alters T cell migration and delays viral clearance. Int Immunol 18(2):291–300

    Article  PubMed  CAS  Google Scholar 

  • Luke PP, Deng JP et al (2006) Prolongation of allograft survival by administration of anti-CD45RB monoclonal antibody is due to alteration of CD45RBhi: CD45RBlo T-cell proportions. Am J Transplant 6(9):2023–2034

    Article  PubMed  CAS  Google Scholar 

  • Lutz MB (2004) IL-3 in dendritic cell development and function: a comparison with GM-CSF and IL-4. Immunobiology 209(1–2):79–87

    Article  PubMed  CAS  Google Scholar 

  • Malinowska M Wilkinson FL et al (2010) Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS One 5(12): e14192.

    Google Scholar 

  • Mellman I, Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106(3):255–258

    Article  PubMed  CAS  Google Scholar 

  • Moore D, Connock MJ et al (2008) The prevalence of and survival in Mucopolysaccharidosis I: hurler, hurler-scheie and scheie syndromes in the UK. Orphanet J Rare Dis 3:24

    Article  PubMed  Google Scholar 

  • Morrissey PJ, Charrier K et al (1993) CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 178(1):237–244

    Article  PubMed  CAS  Google Scholar 

  • Muenzer J, Wraith JE et al (2009) Mucopolysaccharidosis I: management and treatment guidelines. Pediatrics 123(1):19–29

    Article  PubMed  Google Scholar 

  • Ohmi K, Greenberg DS et al (2003) Activated microglia in cortex of mouse models of mucopolysaccharidoses I and IIIB. Proc Natl Acad Sci U S A 100(4):1902–1907

    Article  PubMed  CAS  Google Scholar 

  • Ohta T, Kinoshita T et al (1997) Requirement of the caspase-3/CPP32 protease cascade for apoptotic death following cytokine deprivation in hematopoietic cells. J Biol Chem 272(37):23111–23116

    Article  PubMed  CAS  Google Scholar 

  • Peters PJ, Borst J et al (1991) Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J Exp Med 173(5):1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Piccirillo CA, Shevach EM (2001) Cutting edge: control of CD8+ T cell activation by CD4+ CD25+ immunoregulatory cells. J Immunol 167(3):1137–1140

    PubMed  CAS  Google Scholar 

  • Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6(2):99–104

    Article  PubMed  CAS  Google Scholar 

  • Powrie F, Carlino J et al (1996) A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 183(6):2669–2674

    Article  PubMed  CAS  Google Scholar 

  • Puri N, Roche PA (2008) Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc Natl Acad Sci U S A 105(7):2580–2585

    Article  PubMed  CAS  Google Scholar 

  • Russell C, Hendson G et al (1998) Murine MPS I: insights into the pathogenesis of Hurler syndrome. Clin Genet 53(5):349–361

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Geginat J et al (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    Article  PubMed  CAS  Google Scholar 

  • Settembre C, Fraldi A et al (2008) A block of autophagy in lysosomal storage disorders. Hum Mol Genet 17(1):119–129

    Article  PubMed  CAS  Google Scholar 

  • Shen DT, Ma JS et al (2006) Activation of primary T lymphocytes results in lysosome development and polarized granule exocytosis in CD4+ and CD8+ subsets, whereas expression of lytic molecules confers cytotoxicity to CD8+ T cells. J Leukoc Biol 80(4):827–837

    Article  PubMed  CAS  Google Scholar 

  • Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30(5):636–645

    Article  PubMed  CAS  Google Scholar 

  • Swain SL, Bradley LM et al (1991) Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development. Immunol Rev 123:115–144

    Article  PubMed  CAS  Google Scholar 

  • Tang Q, Bluestone JA (2008) The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9(3):239–244

    Article  PubMed  CAS  Google Scholar 

  • Ten Hove T, The Olle F et al (2004) Expression of CD45RB functionally distinguishes intestinal T lymphocytes in inflammatory bowel disease. J Leukoc Biol 75(6):1010–1015

    Article  PubMed  Google Scholar 

  • Valenzuela J, Schmidt C et al (2002) The roles of IL-12 in providing a third signal for clonal expansion of naive CD8 T cells. J Immunol 169(12):6842–6849

    PubMed  CAS  Google Scholar 

  • Van Gool SW, Vermeiren J et al (1999) Blocking CD40 - CD154 and CD80/CD86 - CD28 interactions during primary allogeneic stimulation results in T cell anergy and high IL-10 production. Eur J Immunol 29(8):2367–2375

    Article  PubMed  Google Scholar 

  • Wraith JE (1995) The mucopolysaccharidoses: a clinical review and guide to management. Arch Dis Child 72(3):263–267

    Article  PubMed  CAS  Google Scholar 

  • Yoshimori T (2004) Autophagy: a regulated bulk degradation process inside cells. Biochem Biophys Res Commun 313(2):453–458

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E Fildes.

Additional information

Communicated by: Douglas A. Brooks

Sources of support: BWB and KL-S are supported by grants from the UK society for Mucopolysaccharide diseases. JEF and LDA are supported by grants from the New Start Charity and UHSM endowments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archer, L.D., Langford-Smith, K.J., Critchley, W.R. et al. Characterisation of the T cell and dendritic cell repertoire in a murine model of mucopolysaccharidosis I (MPS I). J Inherit Metab Dis 36, 257–262 (2013). https://doi.org/10.1007/s10545-012-9508-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-012-9508-8

Keywords

Navigation