Advertisement

Biomedical Microdevices

, 21:93 | Cite as

Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review

  • Mahtab Ghasemi Toudeshkchoui
  • Navid Rabiee
  • Mohammad Rabiee
  • Mojtaba Bagherzadeh
  • Mohammadreza TahririEmail author
  • Lobat Tayebi
  • Michael R. HamblinEmail author
Article
  • 24 Downloads

Abstract

Microfluidic systems (MFS) provide a range of advantages in biomedical applications, including improved controllability of material characteristics and lower consumption of reagents, energy, time and money. Fabrication of MFS employs various materials, such as glass, silicon, ceramics, paper, and metals such as gold, copper, aluminum, chromium and titanium. In this review, gold thin film microfluidic channels (GTFMFC) are discussed with reference to fabrication methods and their diverse use in chemical and biomedical applications. The advantages of gold thin films (GTF) include flexibility, ease of manufacture, adhesion to polymer surfaces, chemical stability, good electrical conductivity, surface plasmon resonance effects, ability to be chemically functionalized, etc. Various electroactuators and electroanalytical devices can incorporate GTF. GTF-based MFS have been used in environmental monitoring, assays of biomarkers, immunoassays, cell culture studies and pathogen identification.

Keywords

Microfluidic systems Gold thin film channels Biomedical applications Surface plasmonic resonance Electrochemical sensors 

Notes

Funding information

MRH was supported by US NIH Grants R01AI050875 and R21AI121700.

Compliance with ethical standards

Conflict of interest

MRH declares the following potential conflicts of interest. Scientific Advisory Boards: Transdermal Cap Inc., Cleveland, OH; BeWell Global Inc., Wan Chai, Hong Kong; Hologenix Inc. Santa Monica, CA; LumiThera Inc., Poulsbo, WA; Vielight, Toronto, Canada; Bright Photomedicine, Sao Paulo, Brazil; Quantum Dynamics LLC, Cambridge, MA; Global Photon Inc., Bee Cave, TX; Medical Coherence, Boston MA; NeuroThera, Newark DE; JOOVV Inc., Minneapolis-St. Paul MN; AIRx Medical, Pleasanton CA; FIR Industries, Inc. Ramsey, NJ; UVLRx Therapeutics, Oldsmar, FL; Ultralux UV Inc., Lansing MI; Illumiheal & Petthera, Shoreline, WA; MB Lasertherapy, Houston, TX; ARRC LED, San Clemente, CA; Varuna Biomedical Corp. Incline Village, NV; Niraxx Light Therapeutics, Inc., Boston, MA. Consulting; Lexington Int, Boca Raton, FL; USHIO Corp, Japan; Merck KGaA, Darmstadt, Germany; Philips Electronics Nederland B.V. Eindhoven, Netherlands; Johnson & Johnson Inc., Philadelphia, PA; Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany. Stockholdings: Global Photon Inc., Bee Cave, TX; Mitonix, Newark, DE.

References

  1. Francesko A, Cardoso V, Lanceros Méndez S. Lab-on-a-chip technology and microfluidics. Microfluidics for pharmaceutical applications: From nano/micro systems fabrication to controlled drug delivery: Elsevier; 2019. p. 3–36Google Scholar
  2. Bruus H. Theoretical microfluidics. 3rd ed. Denmark: Oxford university press Oxford; 2008Google Scholar
  3. Y. Temiz, R.D. Lovchik, G.V. Kaigala, E. Delamarche, Lab-on-a-chip devices: How to close and plug the lab? Microelectron. Eng. 132, 156–175 (2015)CrossRefGoogle Scholar
  4. Bruus H. Theor. Microfluid. Third ed. Denmark: Oxford university press Oxford; 2008Google Scholar
  5. B. Nasseri, N. Soleimani, N. Rabiee, A. Kalbasi, M. Karimi, M.R. Hamblin, Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron. 117, 112–128 (2018)CrossRefGoogle Scholar
  6. F. Farjadian, M. Moghoofei, S. Mirkiani, A. Ghasemi, N. Rabiee, S. Hadifar, et al., Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol. Adv. 36(4), 968–985 (2018)CrossRefGoogle Scholar
  7. N. Nesakumar, S. Kesavan, C. Li, S. Alwarappan, Microfluidic electrochemical devices for biosensing. J Anal Test. 3(1), 3–18 (2019)CrossRefGoogle Scholar
  8. J.W. Judy, Microelectromechanical systems (mems): Fabrication, design and applications. Smart Mater. Struct. 10(6), 1115 (2001)CrossRefGoogle Scholar
  9. J. Xu, Z. Lei, J. Guo, J. Huang, W. Wang, U. Reibetanz, et al., Trapping and driving individual charged micro-particles in fluid with an electrostatic device. Nano-Micro Lett. 8(3), 270–281 (2016)CrossRefGoogle Scholar
  10. Y. Lu, M. Zhang, H. Zhang, J. Huang, Z. Wang, Z. Yun, et al., On-chip acoustic mixer integration of electro-microfluidics towards in-situ and efficient mixing in droplets. MicrofluidNanofluid. 22(12), 146 (2018)Google Scholar
  11. F. Ahmadi, K. Samlali, P. Vo, S. Shih, An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting. Lab Chip 19(3), 524–535 (2019)CrossRefGoogle Scholar
  12. S. Zulkepli, N. Hamid, V. Shukla, Droplet velocity measurement based on dielectric layer thickness variation using digital microfluidic devices. Biosensors. 8(2), 45 (2018)CrossRefGoogle Scholar
  13. E. Elton, Y. Tibrewala, W. Ristenpart, Statistical analysis of droplet charge acquired during contact with electrodes in strong electric fields. Langmuir. 35(11), 3937–3948 (2019)CrossRefGoogle Scholar
  14. R.R. Dos Santos, A. Seabra, Design techniques for microfluidic devices implementation applicable to chemical analysis systems: Theoretical and experimental analysis of microcomponents. Process analysis, design, and intensification in microfluidics and chemical engineering. Brazil: IGI Global, 195–222 (2019)Google Scholar
  15. S.F. Parsa, A. Vafajoo, A. Rostami, R. Salarian, M. Rabiee, N. Rabiee, et al., Early diagnosis of disease using microbead array technology: A review. Anal. Chim. Acta 1032, 1–17 (2018)CrossRefGoogle Scholar
  16. A. Ghasemi, N. Rabiee, S. Ahmadi, S. Hashemzadeh, F. Lolasi, M. Bozorgomid, et al., Optical assays based on colloidal inorganic nanoparticles. Analyst. 143(14), 3249–3283 (2018)CrossRefGoogle Scholar
  17. W.M. Zhang, H. Yan, Z.K. Peng, G. Meng, Electrostatic pull-in instability in mems/nems: A review. Sensor Actuat A-Phys. 214, 187–218 (2014)CrossRefGoogle Scholar
  18. G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, et al., Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications. Sensors. 15(12), 30011–30031 (2015)CrossRefGoogle Scholar
  19. A. Vafajoo, A. Rostami, S.F. Parsa, R. Salarian, N. Rabiee, G. Rabiee, et al., Multiplexed microarrays based on optically encoded microbeads. Biomed. Microdevices 20(3), 66 (2018)CrossRefGoogle Scholar
  20. Rabiee N, Safarkhani M, Rabiee M. Ultra-sensitive electrochemical on-line determination of Clarithromycin based on Poly (L-Aspartic acid)/graphite oxide/pristine graphene/glassy carbon electrode. Asian Journal of Nanosciences and Materials. 2018;1(2. pp. 52–103):63–73Google Scholar
  21. R. De Campos, D. Rackus, R. Shih, C. Zhao, X. Liu, A. Wheeler, “Plug-n-play” sensing with digital microfluidics. Analyt chem. 91(3), 2506–2515 (2019)CrossRefGoogle Scholar
  22. F. Bunge, S. van den Driesche, M. Vellekoop, Symmetric surficial phaseguides: A passive technology to generate wall-less channels by two-dimensional guiding elements. Microfluid. Nanofluid. 20(7), 95 (2016)CrossRefGoogle Scholar
  23. D.P. Parekh, C. Ladd, L. Panich, K. Moussa, M.D. Dickey, 3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels. Lab Chip 16(10), 1812–1820 (2016)CrossRefGoogle Scholar
  24. L. Zhang, W. Wang, X.-J. Ju, R. Xie, Z. Liu, L.Y. Chu, Fabrication of glass-based microfluidic devices with dry film photoresists as pattern transfer masks for wet etching. RSC Adv. 5(8), 5638–5646 (2015)CrossRefGoogle Scholar
  25. M.M. Torunbalci, S.E. Alper, T. Akin, Wafer level hermetic sealing of MEMS devices with vertical feedthroughs using anodic bonding. Sensor Actuat A-Phys. 224, 169–176 (2015)CrossRefGoogle Scholar
  26. P. Mao, J. Han, Fabrication and characterization of 20 nm planar nanofluidic channels by glass–glass and glass–silicon bonding. Lab Chip 5(8), 837–844 (2005)CrossRefGoogle Scholar
  27. T. Naito, M. Nakamura, N. Kaji, T. Kubo, Y. Baba, K. Otsuka, Three-dimensional fabrication for microfluidics by conventional techniques and equipment used in mass production. Micromachines-Basel. 7(5), 82 (2016)CrossRefGoogle Scholar
  28. Karimi M, Mansouri MR, Rabiee N, Hamblin MR. Advances in Nanomaterials for Drug Delivery: Polymeric, nanocarbon, and bio-inspired (San Rafael, CA: Morgan & Claypool). 2018Google Scholar
  29. S. Hajebi, N. Rabiee, M. Bagherzadeh, S. Ahmadi, M. Rabiee, H. Roghani-Mamaqani, et al., Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 92, 1–18 (2019)CrossRefGoogle Scholar
  30. M. Zhang, J. Wu, L. Wang, K. Xiao, W. Wen, A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips. Lab Chip 10(9), 1199–1203 (2010)CrossRefGoogle Scholar
  31. X. Hou, Y.S. Zhang, G. Trujillo-de Santiago, M.M. Alvarez, J. Ribas, S.J. Jonas, et al., Interplay between materials and microfluidics. Nat Rev Mater. 2(5), 17016 (2017)CrossRefGoogle Scholar
  32. C. Owens, A. Hart, High-precision modular microfluidics by micromilling of interlocking injection-molded blocks. Lab Chip 18(6), 890–901 (2018)CrossRefGoogle Scholar
  33. A. Mehboudi, J. Yeom, Experimental and theoretical investigation of a low-Reynolds-number flow through deformable shallow microchannels with ultra-low height-to-width aspect ratios. Microfluid. Nanofluid. 23(5), 66 (2019)CrossRefGoogle Scholar
  34. Nguyen N-T, Wereley ST, Shaegh SAM. Fundamentals and applications of microfluidics: Artech house; USA, 2019Google Scholar
  35. D. Stoecklein, D. Di Carlo, Nonlinear microfluidics. Anal. Chem. 91(1), 296–314 (2019)CrossRefGoogle Scholar
  36. H. Amini, W. Lee, D. Di Carlo, Inertial microfluidic physics. Lab Chip 14(15), 2739–2761 (2014)CrossRefGoogle Scholar
  37. Rabiee N, Kiani M, Bagherzadeh M, Rabiee M, Ahmadi S. Nanoparticle (NP)-Based Delivery Vehicles (San Rafael, CA: Morgan & Claypool). 2019aGoogle Scholar
  38. Rabiee N, Rabiee M, Bagherzadeh M, Hamblin MR. Stimuli-Responsive Polymers: Nano-Dimension (San Rafael, CA: Morgan & Claypool). 2019bGoogle Scholar
  39. Y. Wang, H. Cheng, K. Chang, J. Shiue, J. Wang, Y. Wang, et al., A particle-based microfluidic molecular separation integrating surface-enhanced Raman scattering sensing for purine derivatives analysis. Microfluid. Nanofluid. 23(4), 48 (2019)CrossRefGoogle Scholar
  40. S. Yan, S. Tan, Y. Li, S. Tang, A. Teo, J. Zhang, et al., A portable, hand-powered microfluidic device for sorting of biological particles. Microfluid. Nanofluid. 22(1), 8 (2018)CrossRefGoogle Scholar
  41. G.M. Whitesides, The origins and the future of microfluidics. Nature. 442, 368 (2006)CrossRefGoogle Scholar
  42. A. Grünberger, W. Wiechert, D. Kohlheyer, Single-cell microfluidics: Opportunity for bioprocess development. Curr Opin Biotech. 29, 15–23 (2014)CrossRefGoogle Scholar
  43. Rabiee M, Rabiee N, Salarian R, Rabiee G. Introduction to Nanomaterials in Medicine (San Rafael, CA: Morgan & Claypool). 2019cGoogle Scholar
  44. Rabiee M, Rabiee N, Salarian R, Rabiee G. Nanomaterials: concepts. Introduction to Nanomaterials in Medicine. (San Rafael, CA: Morgan & Claypool). 2019dGoogle Scholar
  45. R. Rusconi, M. Garren, R. Stocker, Microfluidics expanding the frontiers of microbial ecology. Annu. Rev. Biophys. 43, 65–91 (2014)CrossRefGoogle Scholar
  46. M.E. Piyasena, S.W. Graves, The intersection of flow cytometry with microfluidics and microfabrication. Lab Chip 14(6), 1044–1059 (2014)CrossRefGoogle Scholar
  47. R. Riahi, A. Tamayol, S. Shaegh, A. Ghaemmaghami, M. Dokmeci, A. Khademhosseini, Microfluidics for advanced drug delivery systems. Curr Opin Chem Eng. 7, 101–112 (2015)CrossRefGoogle Scholar
  48. Rabiee N, Kiani M, Bagherzadeh M, Rabiee M, Ahmadi S. Smart nanostructures. (San Rafael, CA: Morgan & Claypool). 2019eGoogle Scholar
  49. Rabiee N, Kiani M, Bagherzadeh M, Rabiee M, Ahmadi S. An introduction to drug/gene delivery systems. (San Rafael, CA: Morgan & Claypool). 2019fGoogle Scholar
  50. S. Maghsoudi, B.T. Shahraki, N. Rabiee, R. Afshari, Y. Fatahi, R. Dinarvand, et al., Recent advancements in aptamer-bioconjugates: Sharpening stones for breast and prostate cancers targeting. Journal of Drug Delivery Science and Technology. 101146 (2019)Google Scholar
  51. M.E. Warkiani, B.L. Khoo, L. Wu, A.K.P. Tay, A.A.S. Bhagat, J. Han, et al., Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat. Protoc. 11(1), 134 (2016)CrossRefGoogle Scholar
  52. L. Malic, D. Brassard, T. Veres, M. Tabrizian, Integration and detection of biochemical assays in digital microfluidic LOC devices. Lab Chip 10(4), 418–431 (2010)CrossRefGoogle Scholar
  53. W.D. Childers, P. Crivelli, D. Tyvoll, J.A. Feinn, D.A. Sexton, L.P. Hewlett Packard Development Co, Microfluidic system utilizing thin-film layers to route fluid. U.S. Patent 7, 932,098 (2011)Google Scholar
  54. Schafer H, Chemnitz S, Schumacher S, Koziy V, Fischer A, Meixner AJ, et al., editors. Microfluidics meets thin-film electronics: a new approach towards an integrated intelligent lab-on-a-chip. Smart Sensors, Actuators, and MEMS; 2003: International Society for Optics and PhotonicsGoogle Scholar
  55. E. Samiei, M. Tabrizian, M. Hoorfar, A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 16(13), 2376–2396 (2016)CrossRefGoogle Scholar
  56. Van den Berg, A. and Segerink, L. eds., 2014. Microfluidics for medical applications. Royal Society of ChemistryGoogle Scholar
  57. E.K. Sackmann, A.L. Fulton, D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature. 507(7491), 181 (2014)CrossRefGoogle Scholar
  58. K. Lai, Y. Yang, C. Lee, An intelligent digital microfluidic processor for biomedical detection. J Signal Process Sys. 78(1), 85–93 (2014)CrossRefGoogle Scholar
  59. Zhang S. Biological and Biomedical Coatings Handbook: Applications: CRC Press; 2016CrossRefGoogle Scholar
  60. G. Pease, A.L. Ghozeil, J.S. Dunfield, W.D. Childers, D. Tyvoll, D.A. Sexton, P. Crivelli, L.P. Hewlett Packard Development Co, Microfluidic device with thin-film electronic devices. U.S. Patent 7, 338,637 (2008)Google Scholar
  61. C. Daikuzono, C. Dantas, D. Volpati, C. Constantino, M. Piazzetta, A. Gobbi, et al., Microfluidic electronic tongue. Sensor Actuat B-Chem. 207, 1129–1135 (2015)CrossRefGoogle Scholar
  62. P. Miller, M. Moorman, R. Boehm, S. Wolfley, V. Chavez, J. Baca, et al., Fabrication of hollow metal microneedle arrays using a molding and electroplating method. MRS Adv. 4(24), 1417–1426 (2019)CrossRefGoogle Scholar
  63. Markovic, T., Bao, J., Ocket, I., Kil, D., Brancato, L., Puers, R. and Nauwelaers, B., 2017. Uniplanar microwave heater for digital microfluidics. In 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC) (pp. 1–4). IEEEGoogle Scholar
  64. S. Kalsi, M. Valiadi, M.-N. Tsaloglou, L. Parry-Jones, A. Jacobs, R. Watson, et al., Rapid and sensitive detection of antibiotic resistance on a programmable digital microfluidic platform. Lab Chip 15(14), 3065–3075 (2015)CrossRefGoogle Scholar
  65. F. Chiu, T. Pan, T. Kundu, C. Shih, Thin film applications in advanced electron devices. Adv. Mater. Sci. Eng. 2014 (2014)Google Scholar
  66. P. Heremans, A. Tripathi, A. de Jamblinne de Meux, E. Smits, B. Hou, G. Pourtois, et al., Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications. Adv. Mater. 28(22), 4266–4282 (2016)CrossRefGoogle Scholar
  67. Rao M, Shekhawat M, editors. A brief survey on basic properties of thin films for device application. Int J Mod Phys; 2013: World ScientificGoogle Scholar
  68. M. Nordström, A. Johansson, E. Noguerón, B. Clausen, M. Calleja, A. Boisen, Investigation of the bond strength between the photo-sensitive polymer SU-8 and gold. Microelectron. Eng. 78, 152–157 (2005)CrossRefGoogle Scholar
  69. B. Moazzez, S. O'Brien, S. Merschrod, Improved adhesion of gold thin films evaporated on polymer resin: Applications for sensing surfaces and MEMS. Sensors. 13(6), 7021–7032 (2013)CrossRefGoogle Scholar
  70. M. Abdelgawad, A. Wheeler, Low-cost, rapid-prototyping of digital microfluidics devices. Microfluid. Nanofluid. 4(4), 349 (2008)CrossRefGoogle Scholar
  71. M. Makela, T. Hatanpää, K. Mizohata, J. Raisanen, M. Ritala, M. Leskelä, Thermal atomic layer deposition of continuous and highly conducting gold thin films. Chem. Mater. 29(14), 6130–6136 (2017)CrossRefGoogle Scholar
  72. J. Casanova Morenoa, To J, C. Tony Yang, R. Turner, D. Bizzotto, K. Cheung, Fabricating devices with improved adhesion between pdms and gold-patterned glass. Sensor Actuat B-Chem 246, 904–909 (2017)CrossRefGoogle Scholar
  73. I. Stabrawa, D. Banaś, K. Dworecki, A. Kubala Kukuś, J. Braziewicz, U. Majewska, et al., Investigation of gold nanolayer properties using X-ray reflectometry and spectroscopic ellipsometry methods. Acta Phys. Pol. A 129(2), 233–236 (2016)CrossRefGoogle Scholar
  74. D.I. Yakubovsky, A.V. Arsenin, Y.V. Stebunov, D.Y. Fedyanin, V.S. Volkov, Optical constants and structural properties of thin gold films. Opt. Express 25(21), 25574–25587 (2017)CrossRefGoogle Scholar
  75. J.H. Jou, L.J. Chen, Relaxation modulus and thermal expansion coefficient of polyimide films coated on substrates. Appl. Phys. Lett. 59(1), 46–47 (1991)CrossRefGoogle Scholar
  76. J.-H. Jou, C.-N. Liao, K.-W. Jou, A method for the determination of gold thin film's mechanical properties. Thin Solid Films 238(1), 70–72 (1994)CrossRefGoogle Scholar
  77. A. Goswami, Thin Film Fundamentals (New Delhi, New Age International, 1996)Google Scholar
  78. B. Peeni, M. Lee, A. Hawkins, A. Woolley, Sacrificial layer microfluidic device fabrication methods. Electrophoresis. 27(24), 4888–4895 (2006)CrossRefGoogle Scholar
  79. M. Datta, Applications of electrochemical microfabrication: An introduction. IBM J. Res. Dev. 42(5), 563–566 (1998)CrossRefGoogle Scholar
  80. J. Tien, A. Terfort, G. Whitesides, Microfabrication through electrostatic self-assembly. Langmuir. 13(20), 5349–5355 (1997)CrossRefGoogle Scholar
  81. C. Friedrich, P. Coane, M. Vasile, Micromilling development and applications for microfabrication. Microelectron. Eng. 35(1–4), 367–372 (1997)CrossRefGoogle Scholar
  82. P. Juskova, F. Foret, Application of thin metal film elements in bioanalysis. J. Sep. Sci. 34(20), 2779–2789 (2011)CrossRefGoogle Scholar
  83. Y. Deng, V. Tripkovic, J. Rossmeisl, M. Arenz, Oxygen reduction reaction on Pt overlayers deposited onto a gold film: Ligand, strain, and ensemble effect. ACS Catal. 6(2), 671–676 (2015)CrossRefGoogle Scholar
  84. L. Li, H. Yin, A. Mason, Epoxy chip-in-carrier integration and screen-printed metalization for multichannel microfluidic lab-on-CMOS microsystems. IEEE T Biomed Circ S. 12(2), 416–425 (2018)CrossRefGoogle Scholar
  85. Mohammadzadeh A, Robichaud A, Selvaganapathy P. Rapid and inexpensive method for fabrication and integration of electrodes in microfluidic devices. J Microelectromech S. 2019Google Scholar
  86. H. Zhao, Y. Xu, C. Wang, R. Wang, S. Xiang, L. Chen, Design and fabrication of a microfluidic SERS chip with integrated ag film@ nanoAu. RSC Adv. 6(17), 14105–14111 (2016)CrossRefGoogle Scholar
  87. Folch A. Introduction to bioMEMS. 1st ed. Boca Raton: CRC Press.; 2016 19 April 2016Google Scholar
  88. C. Sielmann, V. Siller, K. Walus, B. Stoeber, Acid-free electrochemical chromium etch and release of nanoscale gold films. J Microelectromech S. 25(4), 701–707 (2016)CrossRefGoogle Scholar
  89. H. Gou, J. Xu, X. Xia, H. Chen, Air plasma assisting microcontact deprinting and printing for gold thin film and PDMS patterns. ACS Appl. Mater. Interfaces 2(5), 1324–1330 (2010)CrossRefGoogle Scholar
  90. S. Dauer, A. Ehlert, S. Büttgenbach, Rapid prototyping of micromechanical devices using a Q-switched Nd: YAG laser with optional frequency doubling. Sensor Actuat A-Phys. 76(1–3), 381–385 (1999)CrossRefGoogle Scholar
  91. W. Schrott, M. Svoboda, Z. Slouka, D. Šnita, Metal electrodes in plastic microfluidic systems. Microelectron. Eng. 86(4–6), 1340–1342 (2009)CrossRefGoogle Scholar
  92. T. Green, Gold etching for microfabrication. Gold Bull. 47(3), 205–216 (2014)CrossRefGoogle Scholar
  93. L. Li, X. Zhao, C. Wong, Deep etching of single-and polycrystalline silicon with high speed, high aspect ratio, high uniformity, and 3D complexity by electric bias-attenuated metal-assisted chemical etching (EMaCE). ACS Appl Mater Inter. 6(19), 16782–16791 (2014)CrossRefGoogle Scholar
  94. C. Peng, B. Cardozo, S. Pang, Three-dimensional metal patterning over nanostructures by reversal imprint. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 26(2), 632–635 (2008)CrossRefGoogle Scholar
  95. S. Madsen, M. Esfandyarpour, M. Brongersma, R. Sinclair, Observing plasmon damping due to adhesion layers in gold nanostructures using electron energy loss spectroscopy. ACS photon. 4(2), 268–274 (2017)CrossRefGoogle Scholar
  96. Meng, W.J. and Mei, F., Louisiana State University and Mechanical College, 2018. Metal-based microchannel heat exchangers made by molding replication and assembly. U.S. Patent 9,891,006Google Scholar
  97. M. Focke, D. Kosse, C. Müller, H. Reinecke, R. Zengerle, F. Von Stetten, Lab-on-a-foil: Microfluidics on thin and flexible films. Lab Chip 10(11), 1365–1386 (2010)CrossRefGoogle Scholar
  98. J. Xiao, R. Chaudhuri, S. Seo, Adhesive polymer bonding method for integration of III-V thin-film optoelectronic devices onto silicon substrate. IEEE T Comp Pack Man. 8(3), 392–398 (2018)Google Scholar
  99. L. Guo, S. De Weerth, High-density stretchable electronics: Toward an integrated multilayer composite. Adv. Mater. 22(36), 4030–4033 (2010)CrossRefGoogle Scholar
  100. C. Huang, M. Bazant, T. Thorsen, Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics. Lab Chip 10(1), 80–85 (2010)CrossRefGoogle Scholar
  101. Franssila S. Introduction to microfabrication. 2nd ed: John Wiley & Sons, Germany; 2010 2010Google Scholar
  102. D. Kang, Y. Kim, G. Ornelas, M. Sinha, K. Naidu, T. Coleman, Scalable microfabrication procedures for adhesive-integrated flexible and stretchable electronic sensors. Sensors. 15(9), 23459–23476 (2015)CrossRefGoogle Scholar
  103. A. Alazzam, N. Alamoodi, M. Abutayeh, I. Stiharu, V. Nerguizian, Fabrication of porous gold film using graphene oxide as a sacrificial layer. Materials. 12(14), 2305 (2019)CrossRefGoogle Scholar
  104. S. Zhu, R. Shabani, J. Rho, Y. Kim, B. Hong, J. Ahn, et al., Graphene-based bimorph microactuators. Nano Lett. 11(3), 977–981 (2011)CrossRefGoogle Scholar
  105. V. Perumal, U. Hashim, S. Gopinath, R. Haarindraprasad, W. Liu, P. Poopalan, et al., Thickness dependent nanostructural, morphological, optical and impedometric analyses of zinc oxide-gold hybrids: Nanoparticle to thin film. PLoS One 10(12), e0144964 (2015)CrossRefGoogle Scholar
  106. Z. Zeng, X. Long, H. Zhou, E. Guo, X. Wang, Z. Hu, On-chip interdigitated supercapacitor based on nano-porous gold/manganese oxide nanowires hybrid electrode. Electrochim. Acta 163, 107–115 (2015)CrossRefGoogle Scholar
  107. X. Wu, J. Zhou, J. Huang, Integration of biomaterials into sensors based on organic thin-film transistors. Macromol Rapid Comm. 39(15), 1800084 (2018)CrossRefGoogle Scholar
  108. K. Lee, L. Lin, Surface micromachined glass and polysilicon microchannels using MUMPs for BioMEMS applications. Sensor Actuat B-Chem. 111, 44–50 (2004)CrossRefGoogle Scholar
  109. L. Guo, S. DeWeerth, An effective lift-off method for patterning high-density gold interconnects on an elastomeric substrate. Small. 6(24), 2847–2852 (2010)CrossRefGoogle Scholar
  110. S. Sharma, K. Buchholz, S. Luber, U. Rant, Silicon-on-insulator microfluidic device with monolithic sensor integration for /spl mu/TAS applications. J. Microelectromech. Syst. 15(2), 308–313 (2006)CrossRefGoogle Scholar
  111. D. Qin, Y. Xia, G. Whitesides, Soft lithography for micro-and nanoscale patterning. Nat. Protoc. 5(3), 491 (2010)CrossRefGoogle Scholar
  112. P. Khashayar, G. Amoabediny, B. Larijani, M. Hosseini, S. Van Put, R. Verplancke, et al., Rapid prototyping of microfluidic chips using laser-cut double-sided tape for electrochemical biosensors. J. Braz. Soc. Mech. Sci. 39(5), 1469–1477 (2017)CrossRefGoogle Scholar
  113. H. Filiatrault, R. Carmichael, R. Boutette, T. Carmichael, A self-assembled, low-cost, microstructured layer for extremely stretchable gold films. ACS Appl Mater Inter. 7(37), 20745–20752 (2015)CrossRefGoogle Scholar
  114. T. Adrega, S. Lacour, Stretchable gold conductors embedded in PDMS and patterned by photolithography: Fabrication and electromechanical characterization. J. Micromech. Microeng. 20(5), 055025 (2010)CrossRefGoogle Scholar
  115. Y. Huang, A. Mason, Lab-on-CMOS integration of microfluidics and electrochemical sensors. Lab Chip 13(19), 3929–3934 (2013)CrossRefGoogle Scholar
  116. P. Lin, F. Yan, Organic thin-film transistors for chemical and biological sensing. Adv. Mater. 24(1), 34–51 (2012)CrossRefGoogle Scholar
  117. C. Wang, C. Yu, Detection of chemical pollutants in water using gold nanoparticles as sensors: A review. Rev. Anal. Chem. 32(1), 1–14 (2013)CrossRefGoogle Scholar
  118. P. Daggumati, Z. Matharu, E. Seker, Effect of nanoporous gold thin film morphology on electrochemical DNA sensing. Analyt chem. 87(16), 8149–8156 (2015)CrossRefGoogle Scholar
  119. K. Han, C. Li, M. Bui, X. Pham, B. Kim, Y. Choa, et al., On-chip electrochemical detection of bio/chemical molecule by nanostructures fabricated in a microfluidic channel. Sensor Actuat B-Chem. 177, 472–477 (2013)CrossRefGoogle Scholar
  120. C. Gabardo, R. Adams McGavin, O. Vanderfleet, L. Soleymani, Rapid prototyping of microfluidic devices with integrated wrinkled gold micro−/nano textured electrodes for electrochemical analysis. Analyst. 140(16), 5781–5788 (2015)CrossRefGoogle Scholar
  121. D. Liana, B. Raguse, L. Wieczorek, G. Baxter, K. Chuah, J. Gooding, et al., Sintered gold nanoparticles as an electrode material for paper-based electrochemical sensors. RSC Adv. 3(23), 8683–8691 (2013)CrossRefGoogle Scholar
  122. P. Lisowski, P. Zarzycki, Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): Development, applications and future trends. Chromatographia. 76(19–20), 1201–1214 (2013)CrossRefGoogle Scholar
  123. A. Manz, N. Graber, H. Widmer, Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensor Actuat B-Chem. 1(1–6), 244–248 (1990)CrossRefGoogle Scholar
  124. J. Mark, A. Kumar, H. Demattio, W. Hoffmann, A. Malik, F. Matysik, Combination of headspace single-drop microextraction, microchip electrophoresis and contactless conductivity detection for the determination of aliphatic amines in the biodegradation process of seafood samples. Electroanalysis. 23(1), 161–168 (2011)CrossRefGoogle Scholar
  125. X. Illa, O. Ordeig, D. Snakenborg, A. Romano Rodríguez, R. Compton, J. Kutter, A cyclo olefin polymer microfluidic chip with integrated gold microelectrodes for aqueous and non-aqueous electrochemistry. Lab Chip 10(10), 1254–1261 (2010)CrossRefGoogle Scholar
  126. R. Carvalhal, M. Simão Kfouri, P.M. de Oliveira, A. Gobbi, L. Kubota, Electrochemical detection in a paper-based separation device. Analyt Chem. 82(3), 1162–1165 (2010)CrossRefGoogle Scholar
  127. H. Qi, L. Niu, J. Zhang, J. Chen, S. Wang, J. Yang, et al., Large-area gold nanohole arrays fabricated by one-step method for surface plasmon resonance biochemical sensing. Sci. China Life Sci. 61(4), 476–482 (2018)CrossRefGoogle Scholar
  128. K. Nakamoto, R. Kurita, O. Niwa, Electrochemical surface plasmon resonance measurement based on gold nanohole array fabricated by nanoimprinting technique. Analyt Chem. 84(7), 3187–3191 (2012)CrossRefGoogle Scholar
  129. K. Namura, K. Nakajima, K. Kimura, M. Suzuki, Microfluidic control on nanoplasmonic thin films using Marangoni effect. J of Nanophotonics. 10(3), 033006 (2016)CrossRefGoogle Scholar
  130. H. Ma, J. Hao, Evaporation induced ordered honeycomb structures of gold nanoparticles at the air/water interface. Chem Eur J 16(2), 655–660 (2010)CrossRefGoogle Scholar
  131. L. Lin, Microscale thermal bubble formation: Thermophysical phenomena and applications. Microscale Thermophysical Engineering. 2(2), 71–85 (1998)CrossRefGoogle Scholar
  132. J. Navarro, M. Werts, Resonant light scattering spectroscopy of gold, silver and gold–silver alloy nanoparticles and optical detection in microfluidic channels. Analyst. 138(2), 583–592 (2013)CrossRefGoogle Scholar
  133. J. Zhou, D. Khodakov, A. Ellis, N. Voelcker, Surface modification for PDMS-based microfluidic devices. Electrophoresis. 33(1), 89–104 (2012)CrossRefGoogle Scholar
  134. H. Jiang, X. Weng, D. Li, Microfluidic whole-blood immunoassays. Microfluid. Nanofluid. 10(5), 941–964 (2011)CrossRefGoogle Scholar
  135. Y. Luo, F. Yu, R. Zare, Microfluidic device for immunoassays based on surface plasmon resonance imaging. Lab Chip 8(5), 694–700 (2008)CrossRefGoogle Scholar
  136. Sarid D, Challener W. Modern introduction to surface plasmons: theory, mathematica modeling, and applications. Tucson, Arizona, Eden Prairie, Minnesota: Cambridge University Press; 2009 JulyGoogle Scholar
  137. J. Qi, P. Motwani, M. Gheewala, C. Brennan, J. Wolfe, W. Shih, Surface-enhanced Raman spectroscopy with monolithic nanoporous gold disk substrates. Nanoscale. 5(10), 4105–4109 (2013)CrossRefGoogle Scholar
  138. E. Seker, Y. Berdichevsky, M. Begley, M. Reed, K. Staley, M. Yarmush, The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies. Nanotechnology. 21(12), 125504 (2010)CrossRefGoogle Scholar
  139. A. Barbosa, J. Wichers, A. van Amerongen, N. Reis, Towards one-step quantitation of prostate-specific antigen (PSA) in microfluidic devices: Feasibility of optical detection with nanoparticle labels. Bio Nano Science. 7(4), 718–726 (2017)Google Scholar
  140. J. Rho, W. Jang, I. Hwang, D. Lee, C. Lee, T. Chung, Multiplex immunoassays using virus-tethered gold microspheres by DC impedance-based flow cytometry. Biosens. Bioelectron. 102, 121–128 (2018)CrossRefGoogle Scholar
  141. M. Lee, K. Lee, K. Kim, K. Oh, J. Choo, SERS-based immunoassay using a gold array-embedded gradient microfluidic chip. Lab Chip 12(19), 3720–3727 (2012)CrossRefGoogle Scholar
  142. C. Dixit, K. Kadimisetty, B. Otieno, C. Tang, S. Malla, C. Krause, et al., Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics. Analyst. 141(2), 536–547 (2016)CrossRefGoogle Scholar
  143. R. Kurita, Y. Yokota, Y. Sato, F. Mizutani, O. Niwa, On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Analyt chem. 78(15), 5525–5531 (2006)CrossRefGoogle Scholar
  144. H. Tsai, C. Lin, Y. Juang, I. Wang, Y. Lin, R. Wang, et al., Multiple type biosensors fabricated using the CMOS BioMEMS platform. Sensor Actuat B-Chem. 144(2), 407–412 (2010)CrossRefGoogle Scholar
  145. C. Seguin, J. McLachlan, P. Norton, L.F. Lagugné, Surface modification of poly (dimethylsiloxane) for microfluidic assay applications. Appl. Surf. Sci. 256(8), 2524–2531 (2010)CrossRefGoogle Scholar
  146. P. Daggumati, S. Appelt, Z. Matharu, M. Marco, E. Seker, Sequence-specific electrical purification of nucleic acids with nanoporous gold electrodes. J. Am. Chem. Soc. 138(24), 7711–7717 (2016)CrossRefGoogle Scholar
  147. S. Unser, I. Bruzas, J. He, L. Sagle, Localized surface plasmon resonance biosensing: Current challenges and approaches. Sensors. 15(7), 15684–15716 (2015)CrossRefGoogle Scholar
  148. S. Klinghammer, T. Uhlig, F. Patrovsky, M. Böhm, J. Schütt, N. Pütz, et al., Plasmonic biosensor based on vertical arrays of gold nanoantennas. ACS sensors. 3(7), 1392–1400 (2018)CrossRefGoogle Scholar
  149. S. Shim, H. Park, G. Choi, H. Shin, S. Kim, A simply fabricated neural probe by laser machining of a thermally laminated gold thin film on transparent cyclic olefin polymer. ACS Omega. 4(2), 2590–2595 (2019)CrossRefGoogle Scholar
  150. D. Ziegler, T. Suzuki, S. Takeuchi, Fabrication of flexible neural probes with built-in microfluidic channels by thermal bonding of parylene. J. Microelectromech. Syst. 15(6), 1477–1482 (2006)CrossRefGoogle Scholar
  151. H. Zhang, J. Jackson, M. Chiao, Microfabricated drug delivery devices: Design, fabrication, and applications. Adv. Funct. Mater. 27(45), 1703606 (2017)CrossRefGoogle Scholar
  152. A. Patra, T. Ding, G. Engudar, Y. Wang, M. Dykas, B. Liedberg, et al., Component-specific analysis of plasma protein corona formation on gold nanoparticles using multiplexed surface plasmon resonance. Small. 12(9), 1174–1182 (2016)CrossRefGoogle Scholar
  153. H. Chirra, T. Desai, Emerging microtechnologies for the development of oral drug delivery devices. Adv. Drug Deliv. Rev. 64(14), 1569–1578 (2012)CrossRefGoogle Scholar
  154. L. Engel, C. Liu, N. Hemed, Y. Khan, A. Arias, Y. Shacham Diamand, et al., Local electrochemical control of hydrogel microactuators in microfluidics. J. Micromech. Microeng. 28(10), 105005 (2018)CrossRefGoogle Scholar
  155. M. McClain, I. Clements, R. Shafer, R. Bellamkonda, M. LaPlaca, M. Allen, Highly-compliant, microcable neuroelectrodes fabricated from thin-film gold and PDMS. Biomed Microdev. 13(2), 361–373 (2011)CrossRefGoogle Scholar
  156. R. Wong, J. Posner, V. Santos, Flexible microfluidic normal force sensor skin for tactile feedback. Sensor Actuat A-Phys. 179, 62–69 (2012)CrossRefGoogle Scholar
  157. H. Kaji, G. Camci Unal, R. Langer, A. Khademhosseini, Engineering systems for the generation of patterned co-cultures for controlling cell–cell interactions. Biochimica et Biophysica Acta (BBA)-General Subjects (3), 239–250 (2011, 1810)CrossRefGoogle Scholar
  158. Richardson J, Björnmalm M, Caruso F. Technology-driven layer-by-layer assembly of nanofilms. science. 2015;348(6233)CrossRefGoogle Scholar
  159. M. Patrascu, J. Gonzalo Ruiz, M. Goedbloed, S. Brongersma, C.M. Crego, Flexible, electrostatic microfluidic actuators based on thin film fabrication. Sensor Actuat A-Physic. 186, 249–256 (2012)CrossRefGoogle Scholar
  160. S. Low, N. Voelcker, L. Canham, K. Williams, The biocompatibility of porous silicon in tissues of the eye. Biomaterials. 30(15), 2873–2880 (2009)CrossRefGoogle Scholar
  161. L. Schmid, D. Weitz, T. Franke, Sorting drops and cells with acoustics: Acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14(19), 3710–3718 (2014)CrossRefGoogle Scholar
  162. M. Odijk, A. Baumann, W. Lohmann, F. van den Brink, W. Olthuis, U. Karst, et al., A microfluidic chip for electrochemical conversions in drug metabolism studies. Lab Chip 9(12), 1687–1693 (2009)CrossRefGoogle Scholar
  163. Q. Wang, Y. Yu, J. Liu, Preparations, characteristics and applications of the functional liquid metal materials. Adv. Eng. Mater. 20(5), 1700781 (2018)CrossRefGoogle Scholar
  164. J. Kim, S. Park, T. Nguyen, M. Chu, J. Pegan, M. Khine, Highly stretchable wrinkled gold thin film wires. Appl. Phys. Lett. 108(6), 061901 (2016)CrossRefGoogle Scholar
  165. Y.A. Bani, Fabrication of electrochemically deposited microelectrodes for microfluidic MEMS applications. Int. J. Electrochem. Sci. 5, 1837–1846 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering, College of EngineeringUniversity of TehranTehranIran
  2. 2.Department of ChemistrySharif University of TechnologyTehranIran
  3. 3.Biomaterial Group, Department of Biomedical EngineeringAmirkabir University of TechnologyTehranIran
  4. 4.Department of Developmental SciencesMarquette UniversityMilwaukeeUSA
  5. 5.Wellman Center for PhotomedicineMassachusetts General HospitalBostonUSA
  6. 6.Department of DermatologyHarvard Medical SchoolBostonUSA
  7. 7.Harvard-MIT Division of Health Sciences and TechnologyCambridgeUSA

Personalised recommendations