Advertisement

Biomedical Microdevices

, 21:72 | Cite as

Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens

  • Hoang Chau La
  • Nae Yoon LeeEmail author
Article
  • 41 Downloads

Abstract

In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the cis-diol group present on the bacterial outer membrane. The modification procedure was conducted at room temperature using disposable syringe. The visible color and fluorescence signals of alizarin red sodium were used to confirm the success of the surface modification process. Escherichia coli O157:H7 containing green fluorescence protein (GFP) and Staphylococcus aureus were chosen as the microbial models to demonstrate the nonspecific immobilization using the microdevice. Bacterial solutions of various concentrations were injected into the microdevice at three flow rates to optimize the operation conditions. This microdevice successfully amplified the 384-bp fragment of the eaeA gene of the captured E. coli O157:H7 within 1 h. Its detection limit for E. coli O157:H7 was determined to be 1 × 103 colony-forming units per milliliter (CFU mL−1). The proposed microdevice serves as a monolithic platform for facile and on-site identification of major foodborne pathogens.

Keywords

Foodborne pathogens Polycarbonate monolithic microdevice On-chip purification On-chip amplification Formylphenylboronic acid Fuchsin staining 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2017R1A2B4008179).

Supplementary material

10544_2019_420_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1.66 MB)

References

  1. A. Adamczyk-Woźniak, R.M. Fratila, I.D. Madura, A. Pawełko, A. Sporzyński, M. Tumanowicz, A.H. Velders, J. Żyła, Tetrahedron Lett. 52, 6639–6642 (2011)CrossRefGoogle Scholar
  2. C.D. Ahrberg, A. Manz, B.G. Chung, Lab Chip 16, 3866–3884 (2016)CrossRefGoogle Scholar
  3. T. Artham, M. Doble, Macromol. Biosci. 8, 14–24 (2008)CrossRefGoogle Scholar
  4. S.A. Barghouthi, Indian J. Microbiol. 51, 430–444 (2011)CrossRefGoogle Scholar
  5. R.F. Borch, M.D. Bernstein, H.D. Durst, J. Am. Chem. Soc. 93, 2897–2904 (1971)CrossRefGoogle Scholar
  6. J.M. Butler, Advanced topics in forensic DNA typing: methodology chapter 4, 69–97 (2012)Google Scholar
  7. N. Debreczeni, A. Fodor, Z. Hell, Catal. Lett. 144, 1547–1551 (2014)CrossRefGoogle Scholar
  8. L. Garibyan, N. Avashia, J. Invest. Dermatol. 133, 1–4 (2013)CrossRefGoogle Scholar
  9. T.R. Garrett, M. Bhakoo, Z. Zhang, Prog. Nat. Sci. 18, 1049–1056 (2008)CrossRefGoogle Scholar
  10. L.E. Govaert, T.A. Tervoort, J. Polym. Sci. B Polym. Phys. 42, 2041–2049 (2004)CrossRefGoogle Scholar
  11. N.S.K. Gunda, M. Singh, L. Norman, K. Kaur, S.K. Mitra, Appl. Surf. Sci. 305, 522–530 (2014)CrossRefGoogle Scholar
  12. M.L. Ha, Y. Zhang, N.Y. Lee, Biotechnol. Bioeng. 113, 2614–2623 (2016)CrossRefGoogle Scholar
  13. R. Jackeray, C.K.V.Z. Abid, G. Singh, S. Jain, S. Chattopadhyaya, S. Sapra, T.G. Shrivastav, H. Singh, Talanta 84, 952–962 (2011)CrossRefGoogle Scholar
  14. T. Kajisa, T. Sakata, Jpn. J. Appl. Phys. 56, 1–5 (2015)Google Scholar
  15. J. Kaur, C. Jiang, G. Liu, Biosens. Bioelectron. 1123, 85–100 (2019)CrossRefGoogle Scholar
  16. K.V. Kong, Z. Lam, W.K.O. Lau, W.K. Leong, M. Olivo, J. Am. Chem. Soc. 135, 18028–18031 (2013)CrossRefGoogle Scholar
  17. M. Krishnan, V.M. Ugaz, M.A. Burns, Science 298, 793 (2002)CrossRefGoogle Scholar
  18. Y. Li, C. Zhang, D. Xing, Microfluid. Nanofluid. 10, 367–380 (2011)CrossRefGoogle Scholar
  19. Y.C. Liu, C.J. Chen, Mass Spectrometry 6, S0063 (2017)CrossRefGoogle Scholar
  20. J. Lyklema, W. Norde, M.C.M. van Loosdrecht, A.J.B. Zehnder, Colloids Surf. 39, 175–187 (1989)CrossRefGoogle Scholar
  21. W.M.J. Ma, M.M.P. Morais, F. D’Hooge, J.M.H. van den Elsen, J.P.L. Cox, T.D. James, J.S. Fossey, Chem. Commun. 13, 532–534 (2009)CrossRefGoogle Scholar
  22. T.P.O. Nguyen, B.M. Tran, N.Y. Lee, Lab Chip 16, 3251–3259 (2016)CrossRefGoogle Scholar
  23. D. Ogończyk, J. Węgrzyn, P. Jankowski, B. Dąbrowski, P. Garstecki, Lab Chip 10, 1324–1327 (2010)CrossRefGoogle Scholar
  24. S.Q.F. Parizzi, N.J. de Andrade, C.A.d.S. Silva, N.d.F.F. Soares, E.A.M. da Silva, Braz. Arch. Biol. Technol. 47, 77–83 (2004)CrossRefGoogle Scholar
  25. B. Pearson, P. Wang, A. Mills, S. Pang, L. McLandsboroug, L. He, Anal. Methods 9, 4732–4739 (2017)CrossRefGoogle Scholar
  26. X.H. Pham, S. Shim, T.H. Kim, E. Hahm, H.M. Kim, W.Y. Rho, D.H. Jeong, Y.S. Lee, B.H. Jun, BioChip J. 11, 46–56 (2017)CrossRefGoogle Scholar
  27. Q.N. Pham, K.T.L. Trinh, S.W. Jung, N.Y. Lee, Biotechnol. Bioeng. 115, 2194–2204 (2018)CrossRefGoogle Scholar
  28. B. Priyanka, R.K. Patil, S. Dwarakanath, Indian J. Med. Res. 144, 327–338 (2016)CrossRefGoogle Scholar
  29. D.S. Raghuvanshi, A.K. Gupta, K.N. Singh, Org. Lett. 14, 4326–4329 (2012)CrossRefGoogle Scholar
  30. C. Schrader, A. Schielke, L. Ellerbroek, R. Johne, L. App. Microbio. 113, 1014–1026 (2012)CrossRefGoogle Scholar
  31. B. Shu, C. Zhang, D. Xing, Lab Chip 15, 2597–2605 (2015)CrossRefGoogle Scholar
  32. B. Shu, C. Zhang, D. Xing, Biosens. Bioelectron. 97, 360–368 (2017)CrossRefGoogle Scholar
  33. C. Sousa, P. Teixeira, S. Bordeira, J. Fonseca, R. Oliveira, J. Adhes. Sci. Technol. 22, 675–686 (2008)Google Scholar
  34. G. Springsteen, B. Wang, Tetrahedron 58, 5291–5300 (2002)CrossRefGoogle Scholar
  35. K.T.L. Trinh, H. Zhang, D.J. Kang, S.H. Kahng, B.D. Tall, N.Y. Lee, Int. Neurourol J. 20, 38–48 (2016)CrossRefGoogle Scholar
  36. K.T.L. Trinh, Y. Zhang, N.Y. Lee, Anal. Chim. Acta 1040, 63–73 (2018)CrossRefGoogle Scholar
  37. M. Varea, A. Clavel, O. Doiz, F.J. Castillo, M.C. Rubio, R. Gómez-Lus, Int. J. Parasitol. 28, 1881–1883 (1998)CrossRefGoogle Scholar
  38. J. Wang, J. Gao, D. Liu, D. Han, Z. Wang, Nanoscale 4, 451–454 (2012)CrossRefGoogle Scholar
  39. S. Wang, G.E. LeCroy, F. Yang, X. Dong, Y.P. Sun, L. Yang, RSC Adv. 5, 91246–91253 (2015a)CrossRefGoogle Scholar
  40. H. Wang, Y. Zhou, X. Jiang, B. Sun, Y. Zhu, H. Wang, Y. Su, Y. He, Angew. Chem. Int. Ed. 54, 5132–5136 (2015b)CrossRefGoogle Scholar
  41. G.F. Whyte, R. Vilar, R. Woscholski, Chem. Biol. 6, 161–174 (2013)CrossRefGoogle Scholar
  42. W. Zhai, X. Sun, T.D. James, J.S. Fossey, Chem. Asian J. 10, 1836–1848 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BioNano TechnologyGachon UniversitySeongnam-siSouth Korea

Personalised recommendations