Highly aligned and geometrically structured poly(glycerol sebacate)-polyethylene oxide composite fiber matrices towards bioscaffolding applications

  • 429 Accesses

  • 1 Citations


The biocompatible and biodegradable polymer poly(glycerol sebacate), or PGS, is a rubber-like material that finds use in several biomedical applications. PGS is often cast into a mold to form desired structures; alternatively, blending PGS with other reinforcing polymers produces viscous solutions that can be spun into non-woven fibrous scaffolds. For tissue scaffolding applications, ordered fibrous matrices are advantageous and have been shown to promote cell orientation and proliferation by contact guidance, providing topographical cues for the seeded cells. The development of techniques for easily producing aligned fibrous matrices is therefore a priority. PGS nanofibers have been fabricated successfully using electrospinning techniques. For producing PGS microfibers, we introduce the electro-less STRAND (Substrate Translation and Rotation for Aligned Nanofiber Deposition) process as an alternative to electrospinning. STRAND provides superior control of fiber properties including diameter, alignment, spacing, and therefore deposition density by mechanically drawing polymer fibers from solution. The goal in using this method is the simple production of aligned PGS fiber matrices for retinal tissue scaffolding.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. S. Agarwal, J.H. Wendorff, A. Greiner, Use of electrospinning technique for biomedical applications. Polymer 49(26), 5603–5621 (2008)

  2. A.S. Badami, M.R. Kreke, M.S. Thompson, J.S. Riffle, A.S. Goldstein, Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 27(4), 596–606 (2006)

  3. M.R. Badrossamay, H.A. McIlwee, J.A. Goss, K.K. Parker, Nanofiber assembly by rotary jet-spinning. Nano Lett. 10(6), 2257–2261 (2010)

  4. C.J. Bettinger, B. Orrick, A. Misra, R. Langer, J.T. Borenstein, Microfabrication of poly (glycerol-sebacate) for contact guidance applications. Biomaterials 27(12), 2558–2565 (2006)

  5. N. Bhardwaj, S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 28(3), 325–347 (2010)

  6. M.H. Bolin, K. Svennersten, X. Wang, I.S. Chronakis, A. Richter-Dahlfors, E.W.H. Jager, M. Berggren, Nano-fiber scaffold electrodes based on PEDOT for cell stimulation. Sensor. Actuat. B-Chem. 142(2), 451–456 (2009)

  7. J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers. J. Electrost. 35(2–3), 151–160 (1995)

  8. J. Gao, A.E. Ensley, R.M. Nerem, Y. Wang, Poly(glycerol sebacate) supports the proliferation and phenotypic protein expression of primary baboon vascular cells. J. Biomed. Mater. Res. A 83A(4), 1070–1075 (2007)

  9. N. Golestaneh, Y. Chu, Y. Xiao, G.L. Stoleru, A.C. Theos, Dysfunctional autophagy in RPE, a contributing factor in age-related macular degeneration. Cell Death Dis. 8, e2537 (2017)

  10. B. Guo, P.X. Ma, Synthetic biodegradable functional polymers for tissue engineering: A brief review. Sci. China Chem. 57(4), 490–500 (2014)

  11. A. Hasan, A. Memic, N. Annabi, M. Hossain, A. Paul, M.R. Dokmeci, F. Dehghani, A. Khademhosseini, Electrospun scaffolds for tissue engineering of vascular grafts. Acta Biomater. 10(1), 11–25 (2014)

  12. J. Hu, D. Kai, H. Ye, L. Tian, X. Ding, S. Ramakrishna, X.H. Loh, Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering. Mater. Sci. Eng. C-Mater. 70(2), 1089–1094 (2017)

  13. O. Karatay, M. Dogan, T. Uyar, D. Cokeliler, I.C. Kocum, An alternative electrospinning approach with varying electric field for 2-D-aligned nanofibers. IEEE T. Nanotechnol. 13(1), 101–108 (2014)

  14. E.D.F. Ker, A.S. Nain, L.E. Weiss, J. Wang, J. Suhan, C.H. Amon, P.G. Campbell, Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32(32), 8097–8107 (2011)

  15. M.J. Kim, M.Y. Hwang, J. Kim, D.J. Chung, Biodegradable and elastomeric poly(glycerol sebacate) as a coating material for ninitol bare stent. Biomed. Res. Int. 2014, 1–7 (2014)

  16. C.C. Lau, M.K. Bayazit, J.C. Knowles, J. Tang, Tailoring degree of esterification and branching of poly(glycerol sebacate) by energy efficient microwave irradiation. Polym. Chem.-UK 8, 3979–3947 (2017)

  17. Y. Li, W.D. Cook, C. Moorhoff, W. Huang, Q. Chen, Synthesis, characterization and properties of biocompatible poly(glycerol sebacate) pre-polymer and gel. Polym. Int. 62(4), 534–547 (2013)

  18. X. Li, A.T. Hong, N. Naskar, H. Chung, Criteria for quick and consistent synthesis of poly(glycerol sebacate) for tailored mechanical properties. Biomacromolecules 16(5), 1525–1533 (2015)

  19. D. Liang, B.S. Hsiao, B. Chu, Functional electrospun nanofibrous scaffolds for biomedical applications. Adv. Drug Deliv. Rev. 59(14), 1392–1412 (2007)

  20. Y. Lin, Y. Chien, J. Chuang, C. Chang, Y. Yang, Y. Lai, W. Lo, K. Chien, T. Huo, C. Wang, Development of a graphene oxide-incorporated polydimethylsiloxane membrane with hexagonal micropillars. Int. J. Mol. Sci. 19(9), 2517 (2018)

  21. C. Liu, P. Hsu, H. Lee, M. Ye, G. Zheng, N. Liu, W. Li, Y. Cui, Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 6(6205) (2015)

  22. N. Masoumi, K.L. Johnson, M.C. Howell, G.C. Engelmayr Jr., Valvular interstitial cell seeded poly(glycerol sebacate) scaffolds: Toward a biomimetic in vitro model for heart valve tissue engineering. Acta Biomater. 9(4), 5974–5988 (2013)

  23. N. Masoumi, B. Larson, N. Annabi, M. Kharaziha, B. Zamanian, K. Shapero, A.T. Cubberley, G. Camci-Unal, K.B. Manning, J.E. Mayer Jr., A. Khademhosseini, Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy. Adv. Healthc. Mater. 3(6), 929–939 (2014)

  24. S.R. Montezuma, J. Loewenstein, C. Scholz, J.F. Rizzo III, Biocompatibility of materials implanted into the subretinal space of Yucatan pigs. Invest. Ophthalmol. Vis. Sci. 47(8), 3514–3522 (2006)

  25. A.S. Nain, J.A. Phillippi, M. Sitti, J. Mackrell, P.G. Campbell, C. Amon, Control of cell behavior by aligned micro/nanofibrous biomaterial scaffolds fabricated by spinneret-based tunable engineered parameters (STEP) technique. Small 4(8), 1153–1159 (2004)

  26. A.S. Nain, M. Sitti, A. Jacobson, T. Kowalewski, C. Amon, Dry spinning based spinneret based tunable engineered parameters (STEP) technique for controlled and aligned deposition of polymeric nanofibers. Macromol. Rapid Commun. 30(16), 1406–1412 (2009)

  27. C.L. Nijst, J.P. Bruggeman, J.M. Karp, L. Ferreira, A. Zumbuehl, C.J. Bettinger, R. Langer, Synthesis and characterization of photocurable elastomers from poly(glycerol-co-sebacate). Biomacromolecules 8(10), 3067–3073 (2007)

  28. S.H. Park, D. Yang, Fabrication of aligned electrospun nanofibers by inclined gap method. J. Appl. Polym. Sci. 120(3), 1800–1807 (2011)

  29. C.D. Pritchard, K.M. Arnér, R.A. Neal, W.L. Neeley, P. Bojo, E. Bachelder, J. Holz, N. Watson, E.A. Botchwey, R.S. Langer, F.K. Ghosh, The use of surface modified poly(glycerol-co-sebacic acid) in retinal transplantation. Biomaterials 31(8), 2153–2162 (2010)

  30. M. Putti, M. Simonet, R. Solberg, G.W.M. Peters, Electrospinning poly(ε-caprolactone) under controlled environmental conditions: Influence on fiber morphology and orientation. Polymer 63, 189–195 (2015)

  31. S. Sant, C.M. Hwang, S. Lee, A. Khademhosseini, Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. Acta Biomater. 5(4), 283–291 (2011)

  32. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012)

  33. T.J. Sill, H.A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29(13), 1989–2006 (2008)

  34. O. Strauss, The retinal pigment epithelium in visual function. Physiol. Rev. 85(3), 845–881 (2005)

  35. D. Sun, C. Chang, S. Li, L. Lin, Near-field electrospinning. Nano Lett. 6(4), 839–842 (2006)

  36. C.A. Sundback, J.Y. Shyu, Y. Wang, W.C. Faquin, R.S. Langer, J.P. Vacanti, T.A. Hadlock, Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 26(27), 5454–5464 (2005)

  37. A.I. Texiera, G.A. McKie, J.D. Foley, P.J. Bertics, P.F. Nealey, C.J. Murphy, The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 27(21), 3945–3954 (2006)

  38. P.S. Thayer, S.S. Verbridge, L.A. Dahlgren, S. Kakar, S.A. Guelcher, A.S. Goldstein, Fiber/collagen composites for ligament tissue engineering: Influence of elastic moduli of sparse aligned fibers on mesenchymal stem cells. J. Biomed. Res. A 104(8), 1894–1901 (2016)

  39. Y. Wang, G.A. Ameer, B.J. Sheppard, R. Langer, A tough biodegradable elastomer. Nat. Biotechnol. 20, 602–606 (2002)

  40. Y. Wang, Y.M. Kim, R. Langer, In vivo degradation characteristics of poly(glycerol sebacate). J. Biomed. Res. A 66(1), 192–197 (2003)

  41. C.Y. Xu, R. Inai, M. Kotaki, S. Ramakrishna, Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 25(5), 877–886 (2004)

  42. F. Xu, L. Li, X. Cui, Fabrication of aligned side-by-side TiO2/SnO2 nanofibers via dual-opposite-spinneret electrospinning. J. Nanomater. 2012, 1–5 (2012)

  43. L. Xu, X. Xu, H. Chen, X. Li, Ocular biocompatibility and tolerance study of biodegradable polymeric micelles in the rabbit eye. Colloid Surface B 112, 30–34 (2013)

  44. F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26(15), 2603–2610 (2005)

  45. X. Zhang, Y. Lu, Centrifugal spinning: An alternative approach to fabricate nanofibers at high speed and low cost. Polym. Rev. 54(4), 677–701 (2015)

  46. G. Zhao, X. Zhang, T.J. Lu, F. Xu, Recent advances in electrospun nanofibrous scaffolds for cardiac tissue engineering. Adv. Funct. Mater. 25(36), 5726–5738 (2015)

Download references


The authors would like to thank Leon Der and Jasper Nijdam (Georgetown University) for their input and technical assistance in the project. Daniel O’Brien would like to thank the NSF-REU program for funding through Grant DMR-1358978.

Author information

Correspondence to Makarand Paranjape.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Brien, D., Hankins, A., Golestaneh, N. et al. Highly aligned and geometrically structured poly(glycerol sebacate)-polyethylene oxide composite fiber matrices towards bioscaffolding applications. Biomed Microdevices 21, 53 (2019).

Download citation


  • Biocompatible polymer
  • Biomedical
  • Tissue engineering
  • Aligned scaffold
  • Poly(glycerol sebacate)