Organotropic drug delivery: Synthetic nanoparticles and extracellular vesicles

  • Sara BusattoEmail author
  • Anthony Pham
  • Annie Suh
  • Shane Shapiro
  • Joy WolframEmail author
Part of the following topical collections:
  1. Special Issue on Biomedical Micro-Nanotechnologies toward Translation, in Honor of Mauro Ferrari’s 60th Birthday


Most clinically approved drugs (primarily small molecules or antibodies) are rapidly cleared from circulation and distribute throughout the body. As a consequence, only a small portion of the dose accumulates at the target site, leading to low efficacy and adverse side effects. Therefore, new delivery strategies are necessary to increase organ and tissue-specific delivery of therapeutic agents. Nanoparticles provide a promising approach for prolonging the circulation time and improving the biodistribution of drugs. However, nanoparticles display several limitations, such as clearance by the immune systems and impaired diffusion in the tissue microenvironment. To overcome common nanoparticle limitations various functionalization and targeting strategies have been proposed. This review will discuss synthetic nanoparticle and extracellular vesicle delivery strategies that exploit organ-specific features to enhance drug accumulation at the target site.


Extracellular vesicles Exosomes Nanoparticles Nanomedicine Organotropic 



This work was mainly supported by Mayo Clinic, the University of Brescia. Among various sources of intramural funding, the authors particularly acknowledge support from the Mayo Clinic in Florida Focused Research Team Program and the Center for Regenerative Medicine. This work was also partially supported by the National Cancer Institute Physical Sciences-Oncology Network of the National Institutes of Health, under award number U54CA210181. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Y. Abbas, H.M.E. Azzazy, S. Tammam, A. Lamprecht, M.E. Ali, A. Schmidt, S. Sollazzo, S. Mathur, Development of an inhalable, stimuli-responsive particulate system for delivery to deep lung tissue. Colloids Surf B Biointerfaces 146, 19–30 (2016)Google Scholar
  2. M.E. Ali, A. Lamprecht, Spray freeze drying for dry powder inhalation of nanoparticles. Eur J Pharm Biopharm 87, 510–517 (2014)Google Scholar
  3. L. Alvarez-Erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal, M.J. Wood, Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29, 341–345 (2011)Google Scholar
  4. J. Ambati, J.P. Atkinson, B.D. Gelfand, Immunology of age-related macular degeneration. Nat Rev Immunol 13, 438–451 (2013)Google Scholar
  5. D.R. Baer, The Chameleon Effect: Characterization Challenges Due to the Variability of Nanoparticles and Their Surfaces. Front Chem 6, 145 (2018)Google Scholar
  6. P. Ballabh, A. Braun, M. Nedergaard, The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16, 1–13 (2004)Google Scholar
  7. S. Barua, S. Mitragotri, Challenges associated with Penetration of Nanoparticles across Cell and Tissue Barriers: A Review of Current Status and Future Prospects. Nano Today 9, 223–243 (2014)Google Scholar
  8. R. Bazak, M. Houri, S. El Achy, S. Kamel, T. Refaat, Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol 141, 769–784 (2015)Google Scholar
  9. N. Bertrand, J. Wu, X. Xu, N. Kamaly, O.C. Farokhzad, Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66, 2–25 (2014)Google Scholar
  10. O. Betzer, M. Shilo, R. Opochinsky, E. Barnoy, M. Motiei, E. Okun, G. Yadid, R. Popovtzer, The effect of nanoparticle size on the ability to cross the blood-brain barrier: an in vivo study. Nanomedicine (Lond) 12, 1533–1546 (2017)Google Scholar
  11. E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33, 941–951 (2015)Google Scholar
  12. D. Boraschi, L.R.C. Castellano, P. Italiani, Editorial: interaction of nanomaterials with the immune system: Role in nanosafety and nanomedicine. Front Immunol 8, 1688 (2017)Google Scholar
  13. D.A. Borrelli, K. Yankson, N. Shukla, G. Vilanilam, T. Ticer, J. Wolfram, Extracellular vesicle therapeutics for liver disease. J Control Release 273, 86–98 (2018)Google Scholar
  14. J.S. Brenner, D.C. Pan, J.W. Myerson, O.A. Marcos-Contreras, C.H. Villa, P. Patel, H. Hekierski, S. Chatterjee, J.Q. Tao, H. Parhiz, K. Bhamidipati, T.G. Uhler, E.D. Hood, R.Y. Kiseleva, V.S. Shuvaev, T. Shuvaeva, M. Khoshnejad, I. Johnston, J.V. Gregory, J. Lahann, T. Wang, E. Cantu, W.M. Armstead, S. Mitragotri, V. Muzykantov, Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat Commun 9, 2684 (2018)Google Scholar
  15. S. Busatto, G. Vilanilam, T. Ticer, W.L. Lin, D.W. Dickson, S. Shapiro, P. Bergese, J. Wolfram, Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells 7, 273 (2018)Google Scholar
  16. M. Caldorera-Moore, N. Guimard, L. Shi, K. Roy, Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 7, 479–495 (2010)Google Scholar
  17. F. Celikoglu, S.I. Celikoglu, E.P. Goldberg, Bronchoscopic intratumoral chemotherapy of lung cancer. Lung Cancer 61, 1–12 (2008)Google Scholar
  18. J.A. Champion, S. Mitragotri, Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103, 4930–4934 (2006)Google Scholar
  19. S. Chen, K. Yang, R.G. Tuguntaev, A. Mozhi, J. Zhang, P.C. Wang, X.J. Liang, Targeting tumor microenvironment with PEG-based amphiphilic nanoparticles to overcome chemoresistance. Nanomedicine 12, 269–286 (2016a)Google Scholar
  20. Y. Chen, L. V. Minh, J. Liu, B. Angelov, M. Drechsler, V. M. Garamus, R. Willumeit-Römer, A. Zou, Baicalin loaded in folate-PEG modified liposomes for enhanced stability and tumor targeting. Colloids Surf B Biointerfaces 140, 74–82 (2016b)Google Scholar
  21. D. S. Chulpanova, K. V. Kitaeva, V. James, A. A. Rizvanov, V. V. Solovyeva, Therapeutic Prospects of Extracellular Vesicles in Cancer Treatment. Front Immunol 9, 1534 (2018)Google Scholar
  22. R. Daneman, A. Prat, The blood-brain barrier. Cold Spring Harb Perspect Biol 7, a020412 (2015)Google Scholar
  23. L. De Backer, T. Naessens, S. De Koker, E. Zagato, J. Demeester, J. Grooten, S.C. De Smedt, K. Raemdonck, Hybrid pulmonary surfactant-coated nanogels mediate efficient in vivo delivery of siRNA to murine alveolar macrophages. J Control Release 217, 53–63 (2015)Google Scholar
  24. P. Decuzzi, M. Ferrari, The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials 27, 5307-5314 (2006)Google Scholar
  25. P. Decuzzi, B. Godin, T. Tanaka, S.Y. Lee, C. Chiappini, X. Liu, M. Ferrari, Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 141, 320–327 (2010)Google Scholar
  26. E.M. Del Amo, A. Urtti, Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today 13, 135–143 (2008)Google Scholar
  27. S. Dhar, F.X. Gu, R. Langer, O.C. Farokhzad, S.J. Lippard, Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci U S A 105, 17356–17361 (2008)Google Scholar
  28. J. Du, L.A. Lane, S. Nie, Stimuli-responsive nanoparticles for targeting the tumor microenvironment. J Control Release 219, 205–214 (2015)Google Scholar
  29. H.C. Fan, W. Gu, J. Wang, Y.J. Blumenfeld, Y.Y. El-Sayed, S.R. Quake, Non-invasive prenatal measurement of the fetal genome. Nature 487, 320–324 (2012)Google Scholar
  30. G. Fanali, A. di Masi, V. Trezza, M. Marino, M. Fasano, P. Ascenzi, Human serum albumin: from bench to bedside. Mol Asp Med 33, 209–290 (2012)Google Scholar
  31. M. Fevrier, K. Dorgham, A. Rebollo, CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. Viruses 3, 586–612 (2011)Google Scholar
  32. A.D. Friedman, S.E. Claypool, R. Liu, The smart targeting of nanoparticles. Curr Pharm Des 19, 6315–6329 (2013)Google Scholar
  33. C.W. Gan, S.S. Feng, Transferrin-conjugated nanoparticles of poly(lactide)-D-alpha-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the blood-brain barrier. Biomaterials 31, 7748–7757 (2010)Google Scholar
  34. F. Gentile, C. Chiappini, D. Fine, R.C. Bhavane, M.S. Peluccio, M.M.C. Cheng, X. Liu, M. Ferrari, P. Decuzzi, The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech 41, 2312–2318 (2008)Google Scholar
  35. E. Gentile, F. Cilurzo, L. Di Marzio, M. Carafa, C.A. Ventura, J. Wolfram, D. Paolino, C. Celia, Liposomal chemotherapeutics. Future Oncol 9, 1849–1859 (2013)Google Scholar
  36. S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone, The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105, 11613–11618 (2008)Google Scholar
  37. K. Greish, Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol Biol 624, 25–37 (2010)Google Scholar
  38. H.H. Gustafson, D. Holt-Casper, D.W. Grainger, H. Ghandehari, Nanoparticle Uptake: The Phagocyte Problem. Nano Today 10, 487–510 (2015)Google Scholar
  39. D.S. Hersh, A.S. Wadajkar, N. Roberts, J.G. Perez, N.P. Connolly, V. Frenkel, J.A. Winkles, G.F. Woodworth, A.J. Kim, Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier. Curr Pharm Des 22, 1177–1193 (2016)Google Scholar
  40. A. Hoshino, B. Costa-Silva, T.L. Shen, G. Rodrigues, A. Hashimoto, M. Tesic Mark, H. Molina, S. Kohsaka, A. Di Giannatale, S. Ceder, S. Singh, C. Williams, N. Soplop, K. Uryu, L. Pharmer, T. King, L. Bojmar, A.E. Davies, Y. Ararso, T. Zhang, H. Zhang, J. Hernandez, J.M. Weiss, V.D. Dumont-Cole, K. Kramer, L.H. Wexler, A. Narendran, G.K. Schwartz, J.H. Healey, P. Sandstrom, K.J. Labori, E.H. Kure, P.M. Grandgenett, M.A. Hollingsworth, M. de Sousa, S. Kaur, M. Jain, K. Mallya, S.K. Batra, W.R. Jarnagin, M.S. Brady, O. Fodstad, V. Muller, K. Pantel, A.J. Minn, M.J. Bissell, B.A. Garcia, Y. Kang, V.K. Rajasekhar, C.M. Ghajar, I. Matei, H. Peinado, J. Bromberg, D. Lyden, Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015)Google Scholar
  41. S.B. Howell, Clinical applications of a novel sustained-release injectable drug delivery system: DepoFoam technology. Cancer J 7, 219–227 (2001)Google Scholar
  42. R.C. Ji, Lymph Nodes and Cancer Metastasis: New Perspectives on the Role of Intranodal Lymphatic Sinuses. Int J Mol Sci 18 (2016)Google Scholar
  43. W. Jiang, B.Y. Kim, J.T. Rutka, W.C. Chan, Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3, 145–150 (2008)Google Scholar
  44. J.V. Jokerst, T. Lobovkina, R.N. Zare, S.S. Gambhir, Nanoparticle PEGylation for imaging and therapy. Nanomedicine (Lond) 6, 715–728 (2011)Google Scholar
  45. A. Khalid, S. Persano, H. Shen, Y. Zhao, E. Blanco, M. Ferrari, J. Wolfram, Strategies for improving drug delivery: nanocarriers and microenvironmental priming. Expert Opin Drug Deliv 14, 865–877 (2016)Google Scholar
  46. P.H. Kierstead, H. Okochi, V.J. Venditto, T.C. Chuong, S. Kivimae, J.M.J. Frechet, F.C. Szoka, The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. J Control Release 213, 1–9 (2015)Google Scholar
  47. H.R. Kim, I.K. Kim, K.H. Bae, S.H. Lee, Y. Lee, T.G. Park, Cationic solid lipid nanoparticles reconstituted from low density lipoprotein components for delivery of siRNA. Mol Pharm 5, 622–631 (2008)Google Scholar
  48. C. Kinnear, T.L. Moore, L. Rodriguez-Lorenzo, B. Rothen-Rutishauser, A. Petri-Fink, Form follows function: nanoparticle shape and its implications for nanomedicine. Chem Rev 117, 11476–11521 (2017)Google Scholar
  49. M. Kojic, M. Milosevic, V. Simic, E.J. Koay, N. Kojic, A. Ziemys, M. Ferrari, Extension of the composite smeared finite element (CSFE) to include lymphatic system in modeling mass transport in capillary systems and biological tissue. J Serbian Soc Comput Mech 11, 108–119 (2017)Google Scholar
  50. W.H. Kong, K. Park, M.Y. Lee, H. Lee, D.K. Sung, S.K. Hahn, Cationic solid lipid nanoparticles derived from apolipoprotein-free LDLs for target specific systemic treatment of liver fibrosis. Biomaterials 34, 542–551 (2013)Google Scholar
  51. S. Kumar, R. Narayan, V. Ahammed, Y. Nayak, A. Naha, U.Y. Nayak, Development of ritonavir solid lipid nanoparticles by Box Behnken design for intestinal lymphatic targeting. J Drug Deliv Sci Technol 44, 181–189 (2018)Google Scholar
  52. I.K. Kwon, S.C. Lee, B. Han, K. Park, Analysis on the current status of targeted drug delivery to tumors. J Control Release 164, 108–114 (2012)Google Scholar
  53. S.Y. Lee, M. Ferrari, P. Decuzzi, Design of bio-mimetic particles with enhanced vascular interaction. J Biomech 42, 1885–1890 (2009)Google Scholar
  54. K.C.P. Li, S.D. Pandit, S. Guccione, M.D.J.B.M. Bednarski, Molecular imaging applications in Nanomedicine. Biomed Microdevices 6, 113–116 (2004)Google Scholar
  55. R. Li, K. Zheng, C. Yuan, Z. Chen, M. Huang, Be active or not: the relative contribution of active and passive tumor targeting of nanomaterials. Nanotheranostics 1, 346–357 (2017)Google Scholar
  56. C. Liang, B. Guo, H. Wu, N. Shao, D. Li, J. Liu, L. Dang, C. Wang, H. Li, S. Li, W.K. Lau, Y. Cao, Z. Yang, C. Lu, X. He, D.W. Au, X. Pan, B.T. Zhang, C. Lu, H. Zhang, K. Yue, A. Qian, P. Shang, J. Xu, L. Xiao, Z. Bian, W. Tan, Z. Liang, F. He, L. Zhang, A. Lu, G. Zhang, Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference-based bone anabolic strategy. Nat Med 21, 288–294 (2015)Google Scholar
  57. H. Liang, K. Huang, T. Su, Z. Li, S. Hu, P.U. Dinh, E.A. Wrona, C. Shao, L. Qiao, A.C. Vandergriff, M.T. Hensley, J. Cores, T. Allen, H. Zhang, Q. Zeng, J. Xing, D.O. Freytes, D. Shen, Z. Yu, K. Cheng, Mesenchymal stem cell/red blood cell-inspired nanoparticle therapy in mice with carbon tetrachloride-induced acute liver failure. ACS Nano 12, 6536–6544 (2018)Google Scholar
  58. B.L. Lin, J.F. Chen, W.H. Qiu, K.W. Wang, D.Y. Xie, X.Y. Chen, Q.L. Liu, L. Peng, J.G. Li, Y.Y. Mei, W.Z. Weng, Y.W. Peng, H.J. Cao, J.Q. Xie, S.B. Xie, A.P. Xiang, Z.L. Gao, Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: A randomized controlled trial. Hepatology 66, 209–219 (2017)Google Scholar
  59. Z. Liu, M. Jiang, T. Kang, D. Miao, G. Gu, Q. Song, L. Yao, Q. Hu, Y. Tu, Z. Pang, H. Chen, X. Jiang, X. Gao, J. Chen, Lactoferrin-modified PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration. Biomaterials 34, 3870–3881 (2013)Google Scholar
  60. M.R. Longmire, M. Ogawa, P.L. Choyke, H. Kobayashi, Biologically optimized nanosized molecules and particles: more than just size. Bioconjug Chem 22, 993–1000 (2011)Google Scholar
  61. L. Luo, X. Zhang, Y. Hirano, P. Tyagi, P. Barabas, H. Uehara, T.R. Miya, N. Singh, B. Archer, Y. Qazi, K. Jackman, S.K. Das, T. Olsen, S.R. Chennamaneni, B.C. Stagg, F. Ahmed, L. Emerson, K. Zygmunt, R. Whitaker, C. Mamalis, W. Huang, G. Gao, S.P. Srinivas, D. Krizaj, J. Baffi, J. Ambati, U.B. Kompella, B.K. Ambati, Targeted intraceptor nanoparticle therapy reduces angiogenesis and fibrosis in primate and murine macular degeneration. ACS Nano 7, 3264–3275 (2013)Google Scholar
  62. H.K. Makadia, S.J. Siegel, Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3, 1377–1397 (2011)Google Scholar
  63. N.A. McNeer, E.B. Schleifman, A. Cuthbert, M. Brehm, A. Jackson, C. Cheng, K. Anandalingam, P. Kumar, L.D. Shultz, D.L. Greiner, W. Mark Saltzman, P.M. Glazer, Systemic delivery of triplex-forming PNA and donor DNA by nanoparticles mediates site-specific genome editing of human hematopoietic cells in vivo. Gene Ther 20, 658–669 (2013)Google Scholar
  64. Y. Mi, C. Mu, J. Wolfram, Z. Deng, T.Y. Hu, X. Liu, E. Blanco, H. Shen, M. Ferrari, A micro/nano composite for combination treatment of melanoma lung metastasis. Adv Healthc Mater 5, 936–946 (2016a)Google Scholar
  65. Y. Mi, J. Wolfram, C. Mu, X. Liu, E. Blanco, H. Shen, M. Ferrari, Enzyme-responsive multistage vector for drug delivery to tumor tissue. Pharmacol Res 113(Pt A), 92–99 (2016b)Google Scholar
  66. B. Modell, M. Darlison, Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 86, 480–487 (2008)Google Scholar
  67. N. Mohandas, P.G. Gallagher, Red cell membrane: past, present, and future. Blood 112, 3939–3948 (2008)Google Scholar
  68. R. Molinaro, J. Wolfram, C. Federico, F. Cilurzo, L. Di Marzio, C.A. Ventura, M. Carafa, C. Celia, M. Fresta, Polyethylenimine and chitosan carriers for the delivery of RNA interference effectors. Expert Opin Drug Deliv 10, 1653–1668 (2013)Google Scholar
  69. C. Mu, X. Wu, X. Zhou, J. Wolfram, J. Shen, D. Zhang, J. Mai, X. Xia, A.M. Holder, M. Ferrari, X. Liu, H. Shen, Chemotherapy sensitizes therapy-resistant cells to mild hyperthermia by suppressing heat shock protein 27 expression in triple-negative breast cancer. Clin Cancer Res 24, 4900–4912 (2018)Google Scholar
  70. P.K.B. Nagesh, N.R. Johnson, V.K.N Boya, P. Chowdhury, S.F. Othman, V. Khalilzad-Sharghi, B.B. Hafeez, A. Ganju, S. Khan, S.W. Behrman, N. Zafar, S.C. Chauhan, M. Jaggi, M.M. Yallapu, PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloid Surf B Biointerfaces 144, 8-20 (2016)Google Scholar
  71. P.N. Navya, H.K Daima, Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg 3, 1 (2016)Google Scholar
  72. V.H. Nguyen, B.J. Lee, Protein corona: a new approach for nanomedicine design. Int J Nanomedicine 12, 3137–3151 (2017)Google Scholar
  73. P.E. Nielsen, M. Egholm, O. Buchardt, Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjug Chem 5, 3–7 (1994)Google Scholar
  74. L. Nogues, A. Benito-Martin, M. Hergueta-Redondo, H. Peinado, The influence of tumour-derived extracellular vesicles on local and distal metastatic dissemination. Mol Aspects Med 60, 15–26 (2018)Google Scholar
  75. H. Nojima, C.M. Freeman, R.M. Schuster, L. Japtok, B. Kleuser, M.J. Edwards, E. Gulbins, A.B. Lentsch, Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J Hepatol 64, 60–68 (2016)Google Scholar
  76. A.W. Nørgaard, S. Larsen, M. Hammer, S.S. Poulsen, K.A. Jensen, G.D. Nielsen, P. Wolkoff, Lung damage in mice after inhalation of nanofilm spray products: The role of perfluorination and free hydroxyl groups. Toxicol Sci 116, 216–224 (2010)Google Scholar
  77. A.O. Oladipo, O.S. Oluwafemi, S.P. Songca, A. Sukhbaatar, S. Mori, J. Okajima, A. Komiya, S. Maruyama, T. Kodama, A novel treatment for metastatic lymph nodes using lymphatic delivery and photothermal therapy. Sci Rep 7, 45459 (2017) Google Scholar
  78. P.K. Pandey, A.K. Sharma, U. Gupta, Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers 4, e1129476 (2016)Google Scholar
  79. D. Paolino, D. Cosco, M. Gaspari, M. Celano, J. Wolfram, P. Voce, E. Puxeddu, S. Filetti, C. Celia, M. Ferrari, D. Russo, M. Fresta, Targeting the thyroid gland with thyroid stimulating hormone (TSH)-nanoliposomes. Biomaterials 35, 7101–7109 (2014)Google Scholar
  80. G. Pasut, D. Paolino, C. Celia, A. Mero, A.S. Joseph, J. Wolfram, D. Cosco, O. Schiavon, H. Shen, M. Fresta, Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy. J Control Release 199, 106–113 (2015)Google Scholar
  81. A.A. Patel, R.J. Patel, S.R. Patel, Nanomedicine for intranasal delivery to improve brain uptake. Curr Drug Deliv 15, 461–469 (2018)Google Scholar
  82. D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2, 751–760 (2007)Google Scholar
  83. J. Pelt, S. Busatto, M. Ferrari, E.A. Thompson, K. Mody, J. Wolfram, Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol Ther 191, 43–49 (2018)Google Scholar
  84. J.G. Piao, L. Wang, F. Gao, Y.Z. You, Y. Xiong, L. Yang, Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy. ACS Nano 8, 10414–10425 (2014)Google Scholar
  85. V.N. Podust, S. Balan, B.C. Sim, M.P. Coyle, U. Ernst, R.T. Peters, V. Schellenberger, Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J Control Release 240, 52–66 (2016)Google Scholar
  86. A.J. Primeau, A. Rendon, D. Hedley, L. Lilge, I.F. Tannock, The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res 11, 8782–8788 (2005)Google Scholar
  87. L. Prisner, N. Bohn, U. Hahn, A. Mews, Size dependent targeted delivery of gold nanoparticles modified with the IL-6R-specific aptamer AIR-3A to IL-6R-carrying cells. Nanoscale 9, 14486–14498 (2017)Google Scholar
  88. Z.M. Qian, Q. Wang, Expression of iron transport proteins and excessive iron accumulation in the brain in neurodegenerative disorders. Brain Res Brain Res Rev 27, 257–267 (1998)Google Scholar
  89. L.J. Raggatt, N.C. Partridge, Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285, 25103–25108 (2010)Google Scholar
  90. T.B. Rahhal, C.A. Fromen, E.M. Wilson, M.P. Kai, T.W. Shen, J.C. Luft, J.M. DeSimone, Pulmonary delivery of butyrylcholinesterase as a model protein to the lung. Mol. Pharm 13, 1626–1635 (2016)Google Scholar
  91. A.S. Ricciardi, R. Bahal, J.S. Farrelly, E. Quijano, A.H. Bianchi, V.L. Luks, R. Putman, F. Lopez-Giraldez, S. Coskun, E. Song, Y. Liu, W.C. Hsieh, D.H. Ly, D.H. Stitelman, P.M. Glazer, W.M. Saltzman, In utero nanoparticle delivery for site-specific genome editing. Nat Commun 9, 2481 (2018)Google Scholar
  92. C. Riling, H. Kamadurai, S. Kumar, C.E. O'Leary, K.P. Wu, E.E. Manion, M. Ying, B.A. Schulman, P.M. Oliver, Itch WW domains inhibit its E3 ubiquitin ligase activity by blocking E2-E3 ligase trans-thiolation. J Biol Chem 290, 23875–23887 (2015)Google Scholar
  93. S.J. Roberts, H.Z. Ke, Anabolic strategies to augment bone fracture healing. Curr Osteoporos Rep 16, 289–298 (2018)Google Scholar
  94. E. Rytting, J. Nguyen, X. Wang, T. Kissel, Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin Drug Deliv 5, 629–639 (2008)Google Scholar
  95. B. Saha, T.H. Evers, M.W. Prins, How antibody surface coverage on nanoparticles determines the activity and kinetics of antigen capturing for biosensing. Anal Chem 86, 8158–8166 (2014)Google Scholar
  96. O. Salata, Applications of nanoparticles in biology and medicine. J Nanotechnol 2, 3 (2004)Google Scholar
  97. E. Samuelsson, H. Shen, E. Blanco, M. Ferrari, J. Wolfram, Contribution of Kupffer cells to liposome accumulation in the liver. Colloids Surf B Biointerfaces 158, 356–362 (2017)Google Scholar
  98. M. P. Scavo, E. Gentile, J. Wolfram, J. Gu, M. Barone, M. Evangelopoulos, J. O. Martinez, X. Liu, C. Celia, E. Tasciotti, E. Vilar, H. Shen, Multistage vector delivery of sulindac and silymarin for prevention of colon cancer. Colloids Surf B Biointerfaces 136, 694–703 (2015)Google Scholar
  99. M.B. Schaffler, O.D. Kennedy, Osteocyte signaling in bone. Curr Osteoporos Rep 10, 118–125 (2012)Google Scholar
  100. S. Schottler, G. Becker, S. Winzen, T. Steinbach, K. Mohr, K. Landfester, V. Mailander, F.R. Wurm, Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat Nanotechnol 11, 372–377 (2016)Google Scholar
  101. J. Shen, R. Xu, J. Mai, H.C. Kim, X. Guo, G. Qin, Y. Yang, J. Wolfram, C. Mu, X. Xia, J. Gu, X. Liu, Z.W. Mao, M. Ferrari, H. Shen, High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics. ACS Nano 7, 9867–9880 (2013)Google Scholar
  102. J. Shen, H.C. Kim, C. Mu, E. Gentile, J. Mai, J. Wolfram, L. Ji, M. Ferrari, Z. Mao, H. Shen, Multifunctional gold nanorods for siRNA gene silencing and photothermal therapy. Adv Healthc Mater 3, 1629–1637 (2014a)Google Scholar
  103. J. Shen, H.C. Kim, H. Su, F. Wang, J. Wolfram, D. Kirui, J. Mai, C. Mu, Z. Mao, H. Shen, Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics 4, 487–497 (2014b)Google Scholar
  104. J. Shen, X. Wu, Y. Lee, J. Wolfram, Z. Mao, M. Ferrari, H. Shen, Porous silicon microparticles for delivery of siRNA therapeutics. J Vis Exp 15, 52075 (2015)Google Scholar
  105. J. Shen, H.C. Kim, J. Wolfram, C. Mu, W. Zhang, H. Liu, Y. Xie, J. Mai, H. Zhang, Z. Li, M. Guevara, Z.W. Mao, H. Shen, A liposome encapsulated ruthenium polypyridine complex as a theranostic platform for triple-negative breast cancer. Nano Lett 17, 2913–2920 (2017a)Google Scholar
  106. J. Shen, H. Liu, C. Mu, J. Wolfram, W. Zhang, H.C. Kim, G. Zhu, Z. Hu, L.N. Ji, X. Liu, M. Ferrari, Z.W. Mao, H. Shen, Multi-step encapsulation of chemotherapy and gene silencing agents in functionalized mesoporous silica nanoparticles. Nanoscale 9, 5329–5341 (2017b)Google Scholar
  107. D. Shi, J. Zhang, Q. Zhou, J. Xin, J. Jiang, L. Jiang, T. Wu, J. Li, W. Ding, J. Li, S. Sun, J. Li, N. Zhou, L. Zhang, L. Jin, S. Hao, P. Chen, H. Cao, M. Li, L. Li, X. Chen, J. Li, Quantitative evaluation of human bone mesenchymal stem cells rescuing fulminant hepatic failure in pigs. Gut 66, 955–964 (2017)Google Scholar
  108. I. Singh, R. Swami, W. Khan, R. Sistla, Lymphatic system: a prospective area for advanced targeting of particulate drug carriers. Expert Opin Drug Deliv 11, 211–229 (2014)Google Scholar
  109. R.F. Spaide, K. Laud, H.F. Fine, J.M. Klancnik Jr., C.B. Meyerle, L.A. Yannuzzi, J. Sorenson, J. Slakter, Y.L. Fisher, M.J. Cooney, Intravitreal bevacizumab treatment of choroidal neovascularization secondary to age-related macular degeneration. Retina 26, 383–390 (2006)Google Scholar
  110. U. Sterzenbach, U. Putz, L.H. Low, J. Silke, S.S. Tan, J. Howitt, Engineered exosomes as vehicles for biologically active proteins. Mol Ther 25, 1269–1278 (2017)Google Scholar
  111. J. Tamargo, J.Y. Le Heuzey, P. Mabo, Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide. Eur J Clin Pharmacol 71, 549–567 (2015)Google Scholar
  112. F. Tewes, O.L. Gobbo, C. Ehrhardt, A.M. Healy, Amorphous Calcium Carbonate Based-Microparticles for Peptide Pulmonary Delivery. ACS Appl Mater Interfaces 8, 1164–1175 (2016)Google Scholar
  113. S.I. Thamake, S.L. Raut, Z. Gryczynski, A.P. Ranjan, J.K. Vishwanatha, Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials 33, 7164–7173 (2012)Google Scholar
  114. C. Théry, K.W. Witwer, E. Aikawa, M.J. Alcaraz, J.D. Anderson, R. Andriantsitohaina, A. Antoniou, T. Arab, F. Archer, G.K. Atkin-Smith, D.C. Ayre, J.-M. Bach, D. Bachurski, H. Baharvand, L. Balaj, S. Baldacchino, N.N. Bauer, A.A. Baxter, M. Bebawy, C. Beckham, A. Bedina Zavec, A. Benmoussa, A.C. Berardi, P. Bergese, E. Bielska, C. Blenkiron, S. Bobis-Wozowicz, E. Boilard, W. Boireau, A. Bongiovanni, F.E. Borràs, S. Bosch, C.M. Boulanger, X. Breakefield, A.M. Breglio, M.Á. Brennan, D.R. Brigstock, A. Brisson, M.L.D. Broekman, J.F. Bromberg, P. Bryl-Górecka, S. Buch, A.H. Buck, D. Burger, S. Busatto, D. Buschmann, B. Bussolati, E.I. Buzás, J.B. Byrd, G. Camussi, D.R.F. Carter, S. Caruso, L.W. Chamley, Y.-T. Chang, C. Chen, S. Chen, L. Cheng, A.R. Chin, A. Clayton, S.P. Clerici, A. Cocks, E. Cocucci, R.J. Coffey, A. Cordeiro-da-Silva, Y. Couch, F.A.W. Coumans, B. Coyle, R. Crescitelli, M.F. Criado, C. D’Souza-Schorey, S. Das, A. Datta Chaudhuri, P. de Candia, E.F. De Santana, O. De Wever, H.A. del Portillo, T. Demaret, S. Deville, A. Devitt, B. Dhondt, D. Di Vizio, L.C. Dieterich, V. Dolo, A.P. Dominguez Rubio, M. Dominici, M.R. Dourado, T.A.P. Driedonks, F.V. Duarte, H.M. Duncan, R.M. Eichenberger, K. Ekström, S. El Andaloussi, C. Elie-Caille, U. Erdbrügger, J.M. Falcón-Pérez, F. Fatima, J.E. Fish, M. Flores-Bellver, A. Försönits, A. Frelet-Barrand, F. Fricke, G. Fuhrmann, S. Gabrielsson, A. Gámez-Valero, C. Gardiner, K. Gärtner, R. Gaudin, Y.S. Gho, B. Giebel, C. Gilbert, M. Gimona, I. Giusti, D.C.I. Goberdhan, A. Görgens, S.M. Gorski, D.W. Greening, J.C. Gross, A. Gualerzi, G.N. Gupta, D. Gustafson, A. Handberg, R.A. Haraszti, P. Harrison, H. Hegyesi, A. Hendrix, A.F. Hill, F.H. Hochberg, K.F. Hoffmann, B. Holder, H. Holthofer, B. Hosseinkhani, G. Hu, Y. Huang, V. Huber, S. Hunt, A.G.-E. Ibrahim, T. Ikezu, J.M. Inal, M. Isin, A. Ivanova, H.K. Jackson, S. Jacobsen, S.M. Jay, M. Jayachandran, G. Jenster, L. Jiang, S.M. Johnson, J.C. Jones, A. Jong, T. Jovanovic-Talisman, S. Jung, R. Kalluri, S.-I. Kano, S. Kaur, Y. Kawamura, E.T. Keller, D. Khamari, E. Khomyakova, A. Khvorova, P. Kierulf, K.P. Kim, T. Kislinger, M. Klingeborn, D.J. Klinke, M. Kornek, M.M. Kosanović, Á.F. Kovács, E.-M. Krämer-Albers, S. Krasemann, M. Krause, I.V. Kurochkin, G.D. Kusuma, S. Kuypers, S. Laitinen, S.M. Langevin, L.R. Languino, J. Lannigan, C. Lässer, L.C. Laurent, G. Lavieu, E. Lázaro-Ibáñez, S. Le Lay, M.-S. Lee, Y.X.F. Lee, D.S. Lemos, M. Lenassi, A. Leszczynska, I.T.S. Li, K. Liao, S.F. Libregts, E. Ligeti, R. Lim, S.K. Lim, A. Linē, K. Linnemannstöns, A. Llorente, C.A. Lombard, M.J. Lorenowicz, Á.M. Lörincz, J. Lötvall, J. Lovett, M.C. Lowry, X. Loyer, Q. Lu, B. Lukomska, T.R. Lunavat, S.L.N. Maas, H. Malhi, A. Marcilla, J. Mariani, J. Mariscal, E.S. Martens-Uzunova, L. Martin-Jaular, M.C. Martinez, V.R. Martins, M. Mathieu, S. Mathivanan, M. Maugeri, L.K. McGinnis, M.J. McVey, D.G. Meckes, K.L. Meehan, I. Mertens, V.R. Minciacchi, A. Möller, M. Møller Jørgensen, A. Morales-Kastresana, J. Morhayim, F. Mullier, M. Muraca, L. Musante, V. Mussack, D.C. Muth, K.H. Myburgh, T. Najrana, M. Nawaz, I. Nazarenko, P. Nejsum, C. Neri, T. Neri, R. Nieuwland, L. Nimrichter, J.P. Nolan, E.N.M. Nolte-‘t Hoen, N. Noren Hooten, L. O’Driscoll, T. O’Grady, A. O’Loghlen, T. Ochiya, M. Olivier, A. Ortiz, L.A. Ortiz, X. Osteikoetxea, O. Ostegaard, M. Ostrowski, J. Park, D.M. Pegtel, H. Peinado, F. Perut, M.W. Pfaffl, D.G. Phinney, B.C.H. Pieters, R.C. Pink, D.S. Pisetsky, E. Pogge von Strandmann, I. Polakovicova, I.K.H. Poon, B.H. Powell, I. Prada, L. Pulliam, P. Quesenberry, A. Radeghieri, R.L. Raffai, S. Raimondo, J. Rak, M.I. Ramirez, G. Raposo, M.S. Rayyan, N. Regev-Rudzki, F.L. Ricklefs, P.D. Robbins, D.D. Roberts, S.C. Rodrigues, E. Rohde, S. Rome, K.M.A. Rouschop, A. Rughetti, A.E. Russell, P. Saá, S. Sahoo, E. Salas-Huenuleo, C. Sánchez, J.A. Saugstad, M.J. Saul, R.M. Schiffelers, R. Schneider, T.H. Schøyen, A. Scott, E. Shahaj, S. Sharma, O. Shatnyeva, F. Shekari, G.V. Shelke, A.K. Shetty, K. Shiba, P.R.M. Siljander, A.M. Silva, A. Skowronek, O.L. Snyder, R.P. Soares, B.W. Sódar, C. Soekmadji, J. Sotillo, P.D. Stahl, W. Stoorvogel, S.L. Stott, E.F. Strasser, S. Swift, H. Tahara, M. Tewari, K. Timms, S. Tiwari, R. Tixeira, M. Tkach, W.S. Toh, R. Tomasini, A.C. Torrecilhas, J.P. Tosar, V. Toxavidis, L. Urbanelli, P. Vader, B.W.M. van Balkom, S.G. van der Grein, J. Van Deun, M.J.C. van Herwijnen, K. Van Keuren-Jensen, G. van Niel, M.E. van Royen, A.J. van Wijnen, M.H. Vasconcelos, I.J. Vechetti, T.D. Veit, L.J. Vella, É. Velot, F.J. Verweij, B. Vestad, J.L. Viñas, T. Visnovitz, K.V. Vukman, J. Wahlgren, D.C. Watson, M.H.M. Wauben, A. Weaver, J.P. Webber, V. Weber, A.M. Wehman, D.J. Weiss, J.A. Welsh, S. Wendt, A.M. Wheelock, Z. Wiener, L. Witte, J. Wolfram, A. Xagorari, P. Xander, J. Xu, X. Yan, M. Yáñez-Mó, H. Yin, Y. Yuana, V. Zappulli, J. Zarubova, V. Žėkas, J.-Y. Zhang, Z. Zhao, L. Zheng, A.R. Zheutlin, A.M. Zickler, P. Zimmermann, A.M. Zivkovic, D. Zocco, E.K. Zuba-Surma, Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7, 1535750 (2018)Google Scholar
  115. G. Tiwari, R. Tiwari, B. Sriwastawa, L. Bhati, S. Pandey, P. Pandey, S.K. Bannerjee, Drug delivery systems: An updated review. Int J Pharm Investig 2, 2–11 (2012)Google Scholar
  116. S. Torosean, B. Flynn, J. Axelsson, J. Gunn, K.S. Samkoe, T. Hasan, M.M. Doyley, B.W. Pogue, Nanoparticle uptake in tumors is mediated by the interplay of vascular and collagen density with interstitial pressure. Nanomedicine 9, 151–158 (2013)Google Scholar
  117. P. Vader, E.A. Mol, G. Pasterkamp, R.M. Schiffelers, Extracellular vesicles for drug delivery. Adv Drug Deliv Rev 106, 148–156 (2016)Google Scholar
  118. A. Venuta, J. Wolfram, H. Shen, M. Ferrari, Post-nano strategies for drug delivery: multistage porous silicon microvectors. J Mater Chem B 5, 207–219 (2017)Google Scholar
  119. K.K. Vidya Vijayan, K.P. Karthigeyan, S.P. Tripathi, L.E. Hanna, Pathophysiology of CD4+ T-Cell Depletion in HIV-1 and HIV-2 Infections. Front Immunol 8, 580 (2017)Google Scholar
  120. V. Wagner, A. Dullaart, A.K. Bock, A. Zweck, The emerging nanomedicine landscape. Nat Biotechnol 24, 1211–1217 (2006)Google Scholar
  121. J. Widmer, C. Thauvin, I. Mottas, V.N. Nguyen, F. Delie, E. Allemann, C. Bourquin, Polymer-based nanoparticles loaded with a TLR7 ligand to target the lymph node for immunostimulation. Int J Pharm 535, 444–451 (2018)Google Scholar
  122. S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta,  J. Audet, H.F. Dvorak, W.C.W. Chan,  Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1, 16014 (2016)Google Scholar
  123. J. Wolfram, M. Ferrari, Clinical cancer nanomedicine. Nano Today,, (2019)Google Scholar
  124. J. Wolfram, K. Suri, Y. Huang, R. Molinaro, C. Borsoi, B. Scott, K. Boom, D. Paolino, M. Fresta, J. Wang, M. Ferrari, C. Celia, H. Shen, Evaluation of anticancer activity of celastrol liposomes in prostate cancer cells. J Microencapsul 31, 501–507 (2014a)Google Scholar
  125. J. Wolfram, K. Suri, Y. Yang, J. Shen, C. Celia, M. Fresta, Y. Zhao, H. Shen, M. Ferrari, Shrinkage of pegylated and non-pegylated liposomes in serum. Colloids Surf B Biointerfaces 114C, 294–300 (2014b)Google Scholar
  126. J. Wolfram, Y. Yang, J. Shen, A. Moten, C. Chen, H. Shen, M. Ferrari, Y. Zhao, The nano-plasma interface: Implications of the protein corona. Colloids Surf B Biointerfaces 124, 17–24 (2014c)Google Scholar
  127. J. Wolfram, H. Shen, M. Ferrari, Multistage vector (MSV) therapeutics. J Control Release 219, 406–415 (2015a)Google Scholar
  128. J. Wolfram, M. Zhu, Y. Yang, J. Shen, E. Gentile, D. Paolino, M. Fresta, G. Nie, C. Chen, H. Shen, M. Ferrari, Y. Zhao, Safety of nanoparticles in medicine. Curr Drug Targets 16, 1671–1681 (2015b)Google Scholar
  129. J. Wolfram, B. Scott, K. Boom, J. Shen, C. Borsoi, K. Suri, R. Grande, M. Fresta, C. Celia, Y. Zhao, H. Shen, M. Ferrari, Hesperetin liposomes for cancer therapy. Curr Drug Deliv 13, 711–719 (2016)Google Scholar
  130. J. Wolfram, S. Nizzero, H. Liu, F. Li, G. Zhang, Z. Li, H. Shen, E. Blanco, M. Ferrari, A chloroquine-induced macrophage-preconditioning strategy for improved nanodelivery. Sci Rep 7, 13738 (2017)Google Scholar
  131. X. Wu, Z. Hu, S. Nizzero, G. Zhang, M.R. Ramirez, C. Shi, J. Zhou, M. Ferrari, H. Shen, Bone-targeting nanoparticle to co-deliver decitabine and arsenic trioxide for effective therapy of myelodysplastic syndrome with low systemic toxicity. J Control Release 268, 92–101 (2017)Google Scholar
  132. S. Yang, H. Gao, Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res 126, 97–108 (2017)Google Scholar
  133. Y. Yang, J. Wolfram, X. Fang, H. Shen, M. Ferrari, Polyarginine induces an antitumor immune response through binding to toll-like receptor 4. Small 10, 1250–1254 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Transplantation MedicineMayo ClinicFloridaUSA
  2. 2.Department of Physiology and Biomedical EngineeringMayo ClinicFloridaUSA
  3. 3.Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
  4. 4.Center for Regenerative MedicineMayo ClinicFloridaUSA
  5. 5.Department of Orthopedic SurgeryMayo ClinicFloridaUSA
  6. 6.Department of NanomedicineHouston Methodist Research InstituteHoustonUSA

Personalised recommendations