Advertisement

Functionalization of endovascular devices with superparamagnetic iron oxide nanoparticles for interventional cardiovascular magnetic resonance imaging

  • Elvin BlancoEmail author
  • Victor Segura-Ibarra
  • Danish Bawa
  • Md Nafiujjaman
  • Suhong Wu
  • Haoran Liu
  • Mauro Ferrari
  • Alan B. Lumsden
  • Dipan J. Shah
  • C. Huie LinEmail author
Article
  • 74 Downloads
Part of the following topical collections:
  1. Biomedical Micro-Nanotechnologies toward Translation

Abstract

Presently, cardiovascular interventions such as stent deployment and balloon angioplasty are performed under x-ray guidance. However, x-ray fluoroscopy has poor soft tissue contrast and is limited by imaging in a single plane, resulting in imprecise navigation of endovascular instruments. Moreover, x-ray fluoroscopy exposes patients to ionizing radiation and iodinated contrast agents. Magnetic resonance imaging (MRI) is a safe and enabling modality for cardiovascular interventions. Interventional cardiovascular MR (iCMR) is a promising approach that is in stark contrast with x-ray fluoroscopy, offering high-resolution anatomic and physiologic information and imaging in multiple planes for enhanced navigational accuracy of catheter-based devices, all in an environment free of radiation and its deleterious effects. While iCMR has immense potential, its translation into the clinical arena is hindered by the limited availability of MRI-visible catheters, wire guides, angioplasty balloons, and stents. Herein, we aimed to create application-specific, devices suitable for iCMR, and demonstrate the potential of iCMR by performing cardiovascular catheterization procedures using these devices. Tools, including catheters, wire guides, stents, and angioplasty balloons, for endovascular interventions were functionalized with a polymer coating consisting of poly(lactide-co-glycolide) (PLGA) and superparamagnetic iron oxide (SPIO) nanoparticles, followed by endovascular deployment in the pig. Findings from this study highlight the ability to image and properly navigate SPIO-functionalized devices, enabling interventions such as successful stent deployment under MRI guidance. This study demonstrates proof-of-concept for rapid prototyping of iCMR-specific endovascular interventional devices that can take advantage of the capabilities of iCMR.

Keywords

Magnetic resonance imaging (MRI) Interventional cardiovascular magnetic resonance (iCMR) Superparamagnetic iron oxide (SPIO) nanoparticles Catheters Polymer coatings 

Notes

Acknowledgements

The authors thank Matthew G. Landry for assistance with schematics. This work was supported by the George and Angelina Kostas Research Center for Cardiovascular Nanomedicine. CHL acknowledges support from the Houston Methodist Specialty Physician Group Grant Program. VS-I is grateful for support from the Instituto Tecnológico y de Estudios Superiores de Monterrey and the Consejo Nacional de Ciencia y Tecnología (CONACyT, 490202/278979). MF gratefully acknowledges support from the Ernest Cockrell Jr. Presidential Distinguished Chair at the Houston Methodist Research Institute. MF serves on the Board of Directors of Arrowhead Pharmaceuticals. The authors declare that they have no conflict of interest.

Supplementary material

10544_2019_393_MOESM1_ESM.docx (596 kb)
ESM 1 (DOCX 600 kb)

References

  1. M. Andreucci, T. Faga, R. Serra, G. De Sarro, A. Michael, Update on the renal toxicity of iodinated contrast drugs used in clinical medicine. Drug Healthc. Patient Saf. 9, 25–37 (2017)CrossRefGoogle Scholar
  2. C.J. Bakker, R.M. Hoogeveen, J. Weber, J.J. vanVaals, M.A. Viergever, W.P. Mali, Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions. Magn. Reson. Med. 36(6), 816–820 (1996)CrossRefGoogle Scholar
  3. E.J. Benjamin, S.S. Virani, C.W. Callaway, A.M. Chamberlain, A.R. Chang, S. Cheng, et al., Heart disease and stroke Statistics-2018 update: A report from the American Heart Association. Circulation 137(12), e67–e492 (2018)CrossRefGoogle Scholar
  4. A. Berrington de Gonzalez, S. Darby, Risk of cancer from diagnostic X-rays: Estimates for the UK and 14 other countries. Lancet 363(9406), 345–351 (2004)CrossRefGoogle Scholar
  5. T.M. Bhat, M.E. Afari, L.A. Garcia, Atherectomy in peripheral artery disease: A review. J Invasive Cardiol 29(4), 135–144 (2017)Google Scholar
  6. M. Bock, S. Volz, S. Zuhlsdorff, R. Umathum, C. Fink, P. Hallscheidt, et al., MR-guided intravascular procedures: Real-time parameter control and automated slice positioning with active tracking coils. J. Magn. Reson. Imaging 19(5), 580–589 (2004)CrossRefGoogle Scholar
  7. M. Bock, R. Umathum, S. Zuehlsdorff, S. Volz, C. Fink, P. Hallscheidt, et al., Interventional magnetic resonance imaging: An alternative to image guidance with ionising radiation. Radiat. Prot. Dosim. 117(1–3), 74–78 (2005)CrossRefGoogle Scholar
  8. C.E. Chambers, K.A. Fetterly, R. Holzer, P.J. Lin, J.C. Blankenship, S. Balter, et al., Radiation safety program for the cardiac catheterization laboratory. Catheter. Cardiovasc. Interv. 77(4), 546–556 (2011)CrossRefGoogle Scholar
  9. H. Clogenson, J. Dobbelsteen, Catheters and guidewires for interventional MRI: Are we there yet? J Imaging Intervent Radiol 2, 28 (2016)Google Scholar
  10. Z.C. Higgs, D.A. Macafee, B.D. Braithwaite, C.A. Maxwell-Armstrong, The Seldinger technique: 50 years on. Lancet 366(9494), 1407–1409 (2005)CrossRefGoogle Scholar
  11. T. Klemm, S. Duda, J. Machann, K. Seekamp-Rahn, L. Schnieder, C.D. Claussen, et al., MR imaging in the presence of vascular stents: A systematic assessment of artifacts for various stent orientations, sequence types, and field strengths. J. Magn. Reson. Imaging 12(4), 606–615 (2000)CrossRefGoogle Scholar
  12. O. Kocaturk, A.H. Kim, C.E. Saikus, M.A. Guttman, A.Z. Faranesh, C. Ozturk, et al., Active two-channel 0.035″ guidewire for interventional cardiovascular MRI. J. Magn. Reson. Imaging 30(2), 461–465 (2009)CrossRefGoogle Scholar
  13. J.J. Krueger, P. Ewert, S. Yilmaz, D. Gelernter, B. Peters, K. Pietzner, et al., Magnetic resonance imaging-guided balloon angioplasty of coarctation of the aorta: A pilot study. Circulation 113(8), 1093–1100 (2006)CrossRefGoogle Scholar
  14. S. Krueger, S. Schmitz, S. Weiss, D. Wirtz, M. Linssen, H. Schade, et al., An MR guidewire based on micropultruded fiber-reinforced material. Magn. Reson. Med. 60(5), 1190–1196 (2008)CrossRefGoogle Scholar
  15. J. Lotz, Interventional vascular MRI: Moving forward. Eur. Heart J. 34(5), 327–329 (2013)CrossRefGoogle Scholar
  16. Y. Ma, N. Gogin, P. Cathier, R.J. Housden, G. Gijsbers, M. Cooklin, et al., Real-time x-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions. Med. Phys. 40(7), 071902 (2013)CrossRefGoogle Scholar
  17. P. Magnusson, E. Johansson, S. Mansson, J.S. Petersson, C.M. Chai, G. Hansson, et al., Passive catheter tracking during interventional MRI using hyperpolarized 13C. Magn. Reson. Med. 57(6), 1140–1147 (2007)CrossRefGoogle Scholar
  18. J.R. Mazal, T. Rogers, W.H. Schenke, A.Z. Faranesh, M. Hansen, K. O'Brien, et al., Interventional-cardiovascular MR: Role of the interventional MR technologist. Radiol. Technol. 87(3), 261–270 (2016)Google Scholar
  19. M.E. Miquel, S. Hegde, V. Muthurangu, B.J. Corcoran, S.F. Keevil, D.L.G. Hill, et al., Visualization and tracking of an inflatable balloon catheter using SSFP in a flow phantom and in the heart and great vessels of patients. Magn. Reson. Med. 51(5), 988–995 (2004)CrossRefGoogle Scholar
  20. R.A. Omary, O. Unal, D.S. Koscielski, R. Frayne, F.R. Korosec, C.A. Mistretta, et al., Real-time MR imaging-guided passive catheter tracking with use of gadolinium-filled catheters. J. Vasc. Interv. Radiol. 11(8), 1079–1085 (2000)CrossRefGoogle Scholar
  21. T. Pucelikova, G. Dangas, R. Mehran, Contrast-induced nephropathy. Catheter. Cardiovasc. Interv. 71(1), 62–72 (2008)CrossRefGoogle Scholar
  22. K. Ratnayaka, A.Z. Faranesh, M.A. Guttman, O. Kocaturk, C.E. Saikus, R.J. Lederman, Interventional cardiovascular magnetic resonance: still tantalizing. J. Cardiovasc. Magn. Reson. 10, 62 (2008)CrossRefGoogle Scholar
  23. K. Ratnayaka, A.Z. Faranesh, M.S. Hansen, A.M. Stine, M. Halabi, I.M. Barbash, et al., Real-time MRI-guided right heart catheterization in adults using passive catheters. Eur. Heart J. 34(5), 380–389 (2013)CrossRefGoogle Scholar
  24. A.N. Raval, J.D. Telep, M.A. Guttman, C. Ozturk, M. Jones, R.B. Thompson, et al., Real-time magnetic resonance imaging-guided stenting of aortic coarctation with commercially available catheter devices in Swine. Circulation 112(5), 699–706 (2005)CrossRefGoogle Scholar
  25. T. Rogers, K. Ratnayaka, J.M. Khan, A. Stine, W.H. Schenke, L.P. Grant, et al., CMR fluoroscopy right heart catheterization for cardiac output and pulmonary vascular resistance: Results in 102 patients. J. Cardiovasc. Magn. Reson. 19(1), 54 (2017)CrossRefGoogle Scholar
  26. D.L. Rubin, A.V. Ratner, S.W. Young, Magnetic-susceptibility effects and their application in the development of new ferromagnetic catheters for magnetic-resonance-imaging. Investig. Radiol. 25(12), 1325–1332 (1990)CrossRefGoogle Scholar
  27. M. Saeed, S.W. Hetts, J. English, M. Wilson, MR fluoroscopy in vascular and cardiac interventions (review). Int. J. Card. Imaging 28(1), 117–137 (2012)CrossRefGoogle Scholar
  28. C.E. Saikus, R.J. Lederman, Interventional cardiovascular magnetic resonance imaging: A new opportunity for image-guided interventions. JACC. Cardiovasc. Imaging 2(11), 1321–1331 (2009)CrossRefGoogle Scholar
  29. K. Slicker, W.G. Lane, O.O. Oyetayo, L.A. Copeland, E.M. Stock, J.B. Michel, et al., Daily cardiac catheterization procedural volume and complications at an academic medical center. Cardiovasc. Diagn. Ther. 6(5), 446–452 (2016)CrossRefGoogle Scholar
  30. A. Stadler, W. Schima, A. Ba-Ssalamah, J. Kettenbach, E. Eisenhuber, Artifacts in body MR imaging: Their appearance and how to eliminate them. Eur. Radiol. 17(5), 1242–1255 (2007)CrossRefGoogle Scholar
  31. O. Unal, J. Li, W. Cheng, H. Yu, C.M. Strother, MR-visible coatings for endovascular device visualization. J. Magn. Reson. Imaging 23(5), 763–769 (2006)CrossRefGoogle Scholar
  32. K. Zhang, A.J. Krafft, R. Umathum, F. Maier, W. Semmler, M. Bock, Real-time MR navigation and localization of an intravascular catheter with ferromagnetic components. Magn Reson Mater Phy 23(3), 153–163 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Elvin Blanco
    • 1
    • 2
    Email author
  • Victor Segura-Ibarra
    • 1
    • 3
  • Danish Bawa
    • 2
  • Md Nafiujjaman
    • 1
  • Suhong Wu
    • 1
  • Haoran Liu
    • 1
  • Mauro Ferrari
    • 1
    • 4
  • Alan B. Lumsden
    • 5
  • Dipan J. Shah
    • 2
  • C. Huie Lin
    • 2
    Email author
  1. 1.Department of NanomedicineHouston Methodist Research InstituteHoustonUSA
  2. 2.Department of Cardiology, Houston Methodist DeBakey Heart and Vascular CenterHouston Methodist HospitalHoustonUSA
  3. 3.Escuela de Ingeniería y CienciasTecnológico de MonterreyMonterreyMexico
  4. 4.Department of MedicineWeill Cornell Medical CollegeNew YorkUSA
  5. 5.Department of Cardiovascular Surgery, Houston Methodist DeBakey Heart and Vascular CenterHouston Methodist HospitalHoustonUSA

Personalised recommendations