Advertisement

Biomedical Microdevices

, 21:48 | Cite as

Inkjet printed microfluidic paper-based analytical device (μPAD) for glucose colorimetric detection in artificial urine

  • Han Zhang
  • Ethan Smith
  • Wei Zhang
  • Anhong ZhouEmail author
Article

Abstract

This article introduces a novel inkjet printing method for the fabrication of a microfluidic paper-based analytical device (μPADs) with improved analytical performance for colorimetric measurements. Firstly, a hydrophobic boundary was created by wax printing on chromatography paper. Then, chitosan (CHI), 3,3′,5,5’-Tetramethylbenzidine (TMB) and enzymatic mixture solvent (glucose oxidase (GOx) and horseradish peroxidase (HRP)) were sequentially printed in the sensing zone. Polyethylene glycol (PEG6000) was mixed with the bienzymatic solution to act as an enzyme stabilizer, forming the printable ink. The resulting μPADs exhibited a linear relationship between color intensity and glucose concentration from 0.0 25 mg/ml to 0 .5mg/ml. The detectable glucose concentration was in a clinically relevant range from 0.01 mg/ml to 4 mg/ml. The limit of detection (LOD) was achieved at 0.01 mg/ml. After 60-day storage under 4 °C, the color intensity at the testing zone retained over 80% of the original intensity. In addition, a smartphone application was developed for in situ colorimetric image processing, and the colorimetric analysis results were compared with those from the use of a scanner followed by processing using ImageJ. Furthermore, the development of this ink printing method also provides a point of care (POC) platform for other substances detection purposes.

Keywords

μPAD Colorimetric detection Glucose Inkjet printing Smartphone-based assay 

Notes

Acknowledgments

We gratefully acknowledge financial support from Utah Water Research Laboratory, Utah Agricultural Experiment Station, partially by National Science Foundation (award 1264498). We also thank FenAnn Shen from USU Microscopy Core Facility for collecting SEM images.

Supplementary material

10544_2019_388_MOESM1_ESM.docx (9 mb)
ESM 1 (DOCX 9 mb)

References

  1. L. Cai, Y. Wang, Y. Wu, C. Xu, M. Zhong, H. Lai, J. Huang, Analyst. 139, 4593 (2014)CrossRefGoogle Scholar
  2. P. De Tarso Garcia, T.M. Garcia Cardoso, C.D. Garcia, E. Carrilho, W.K. Tomazelli Coltro, RSC Adv. 4, 37637 (2014)CrossRefGoogle Scholar
  3. W. Dungchai, O. Chailapakul, C.S. Henry, Anal. Chem. 81, 5821 (2009)CrossRefGoogle Scholar
  4. E. Evans, E.F. Gabriel, T.E. Benavidez, W.K. Tomazelli Coltro, C.D. Garcia, Analyst. 139, 5560 (2014a)CrossRefGoogle Scholar
  5. E. Evans, E.F.M. Gabriel, W.K.T. Coltro, C.D. Garcia, Analyst. 139, 2127 (2014b)CrossRefGoogle Scholar
  6. F. Figueredo, P.T. Garcia, E. Cortón, W.K.T. Coltro, ACS Appl. Mater. Interfaces 8, 11 (2015)CrossRefGoogle Scholar
  7. E.F. Gabriel, P.T. Garcia, T.M. Cardoso, F.M. Lopes, F.T. Martins, W.K. Coltro, Analyst. 141, 4749 (2016)CrossRefGoogle Scholar
  8. E. Gabriel, P. Garcia, F. Lopes, W. Coltro, Micromachines. 8, 104 (2017)CrossRefGoogle Scholar
  9. D.L. Giokas, G.Z. Tsogas, A.G. Vlessidis, Anal. Chem. 86, 6202 (2014)CrossRefGoogle Scholar
  10. J. Hu, S. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T.J. Lu, F. Xu, Biosens. Bioelectron. 54, 585 (2014)CrossRefGoogle Scholar
  11. C.H. Lee, L. Tian, S. Singamaneni, ACS Appl. Mater. Interfaces 2, 3429 (2010)CrossRefGoogle Scholar
  12. B. Li, W. Zhang, L. Chen, B. Lin, Electrophoresis. 34, 2162 (2013)CrossRefGoogle Scholar
  13. W. Li, D. Qian, Q. Wang, Y. Li, N. Bao, H. Gu, C. Yu, Sens. Actuators. B. Chem. 231, 230 (2016)Google Scholar
  14. H. Liu, R.M. Crooks, J. Am. Chem. Soc. 133, 17564 (2011)CrossRefGoogle Scholar
  15. W. Liu, C.L. Cassano, X. Xu, Z.H. Fan, Anal. Chem. 85, 10270 (2013)CrossRefGoogle Scholar
  16. S. Liu, W. Su, X. Ding, Sensors., 16 (2016)CrossRefGoogle Scholar
  17. A. Määttänen, U. Vanamo, P. Ihalainen, P. Pulkkinen, H. Tenhu, J. Bobacka, J. Peltonen, Sens. Actuators. B. Chem. 177, 153 (2013)Google Scholar
  18. A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Angew. Chem. 46, 1318 (2007)CrossRefGoogle Scholar
  19. A.W. Martinez, S.T. Phillips, E. Carrilho, S.W. Thomas Iii, H. Sindi, G.M. Whitesides, Anal. Chem. vol 80 (2008), p. 3699CrossRefGoogle Scholar
  20. A. W. Martinez, S. T. Phillips, G. M. Whitesides and E. Carrilho, Diagnostics for the developing world: microfluidic paper-based analytical devices. ed.)^eds.), ACS Publications (2009)Google Scholar
  21. S. Mohammadi, M. Maeki, R.M. Mohamadi, A. Ishida, H. Tani, M. Tokeshi, Analyst. 140, 6493 (2015)CrossRefGoogle Scholar
  22. L.C.D.L. Novaes, A.F. Jozala, P.G. Mazzola, A.P. Júnior, Braz. J. Pharm. Sci. 50, 371 (2014)CrossRefGoogle Scholar
  23. S. Oyola-Reynoso, A.P. Heim, J. Halbertsma-Black, C. Zhao, I.D. Tevis, S. Cinar, R. Cademartiri, X. Liu, J.F. Bloch, M.M. Thuo, Talanta. 144, 289 (2015)CrossRefGoogle Scholar
  24. L. Shen, J.A. Hagen, I. Papautsky, Lab Chip 12, 4240 (2012)CrossRefGoogle Scholar
  25. A.L. Soares, G.M. Guimaraes, B. Polakiewicz, R.N. De Moraes Pitombo, J. Abrahao-Neto, Int. J. Pharm. 237, 163 (2002)CrossRefGoogle Scholar
  26. M. Talukder, T. Takeyama, Y. Hayashi, J. Wu, T. Kawanishi, N. Shimizu, C. Ogino, Appl. Biochem. Biotechnol. 110, 101 (2003)CrossRefGoogle Scholar
  27. N.K. Thom, G.G. Lewis, K. Yeung, S.T. Phillips, RSC Adv. 4, 1334 (2014)CrossRefGoogle Scholar
  28. S.K. Vashist, O. Mudanyali, E.M. Schneider, R. Zengerle, A. Ozcan, Anal. Bioanal. Chem. 406, 3263 (2014)CrossRefGoogle Scholar
  29. V. Vosmanská, K. Kolářová, S. Rimpelová, Z. Kolská, V. Švorčík, RSC Adv. 5, 17690 (2015)CrossRefGoogle Scholar
  30. S. Wang, L. Ge, X. Song, J. Yu, S. Ge, J. Huang, F. Zeng, Biosens. Bioelectron. 31, 212 (2012)CrossRefGoogle Scholar
  31. W.Y. Wei, I.M. White, Analyst. 138, 1020 (2013)CrossRefGoogle Scholar
  32. X. Wei, T. Tian, S. Jia, Z. Zhu, Y. Ma, J. Sun, Z. Lin, C.J. Yang, Anal. Chem. 88, 2345 (2016)CrossRefGoogle Scholar
  33. E. Witkowska Nery, Analysis of glucose, cholesterol and uric acid. In Analysis of Samples of Clinical and Alimentary Interest with Paper-Based Devices. pp. 25, (2016)Google Scholar
  34. M. Zhou, M. Yang, F. Zhou, Biosens. Bioelectron. 55, 39 (2014)CrossRefGoogle Scholar
  35. W.-J. Zhu, D.-Q. Feng, M. Chen, Z.-D. Chen, R. Zhu, H.-L. Fang, W. Wang, Sens. Actuators. B. Chem. 190, 414 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Han Zhang
    • 1
  • Ethan Smith
    • 2
  • Wei Zhang
    • 1
  • Anhong Zhou
    • 1
    Email author
  1. 1.Department of Biological EngineeringUtah State UniversityLoganUSA
  2. 2.Thayer School of EngineeringDartmouth CollegeHanoverUSA

Personalised recommendations