Advertisement

Polymers for extended-release administration

  • Marion S. Paolini
  • Owen S. Fenton
  • Chandrabali Bhattacharya
  • Jason L. Andresen
  • Robert LangerEmail author
Article
Part of the following topical collections:
  1. Special Issue on Biomedical Micro-Nanotechnologies toward Translation, in Honor of Mauro Ferrari’s 60th Birthday

Abstract

Developing strategies to deliver the required dose of therapeutics into target tissues and cell populations within the body is a principal aim of controlled release and drug delivery. Specifically, there is an interest in developing formulations that can achieve drug concentrations within the therapeutic window, for extended periods of time, with tunable release profiles, and with minimal complication and distress for the patient. To date, drug delivery systems have been developed to serve as depots, triggers, and carriers for therapeutics including small molecules, biologics, and cell-based therapies. Notably, the efficacy of these systems is intricately tied to the manner in which they are administered. For example, systemic and oral routes of administration are common, but both can result in rapid clearance from the organism. Towards this end, what formulation and administration route strategies are available to prolong the bioavailability of therapeutics? Here, we discuss historical and modern drug delivery systems, with the intention of exploring how properties including formulation, administration route and chemical structure influence the ability to achieve extended-release drug release profiles within the body.

Keywords

Controlled release system Drug delivery Extended release Polymer 

Notes

Acknowledgements

We would like to congratulate Professor Mauro Ferrari on the occasion of his 60th birthday for his impactful scientific career and his contributions to the field of bioengineering. Some of us were fortunate enough to have the opportunity to attend a lecture he gave at MIT in February 2018. Professor Ferrari’s talk was creative and exciting, and his approach to science, management, and culture was truly inspiring. Congratulations Professor Ferrari and we wish you the happiest of birthdays.

References

  1. A. Aghabegi Moghanjoughi, D. Khoshnevis, A. Zarrabi, A concise review on smart polymers for controlled drug release. Drug Deliv. Transl. Res. 6(3), 333–340 (2016).  https://doi.org/10.1007/s13346-015-0274-7. CrossRefGoogle Scholar
  2. T. Alfrey, E.F. Gurnee, W.g. Lloyd, Diffusion in glassy polymers. J. Polym. Sci. C 12, 249–261 (1966).  https://doi.org/10.1002/pol.1969.160071204 CrossRefGoogle Scholar
  3. Amer, L. D. and Bryant, S. J. (2016) ‘The in vitro and in vivo response to MMP-sensitive poly(ethylene glycol) hydrogels’, Ann. Biomed. Eng. Springer US, 44(6), pp. 1959–1969. doi:  https://doi.org/10.1007/s10439-016-1608-4.CrossRefGoogle Scholar
  4. D. An et al., Designing a retrievable and scalable cell encapsulation device for potential treatment of type 1 diabetes. Proc. Natl. Acad. Sci. 115(2), E263–E272 (2018).  https://doi.org/10.1073/pnas.1708806115 CrossRefGoogle Scholar
  5. J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials. Semin. Immunol. 20(2), 86–100 (2008).  https://doi.org/10.1016/j.smim.2007.11.004 CrossRefGoogle Scholar
  6. J.M. Anderson, M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 28, 5–24 (1997).  https://doi.org/10.1016/j.addr.2012.09.004. CrossRefGoogle Scholar
  7. S.D. Anker et al., A prospective comparison of alginate-hydrogel with standard medical therapy to determine impact on functional capacity and clinical outcomes in patients with advanced heart failure (AUGMENT-HF trial). Eur. Heart J. 36(34), 2297–2309 (2015).  https://doi.org/10.1093/eurheartj/ehv259 CrossRefGoogle Scholar
  8. E.A. Appel et al., ‘Self-assembled hydrogels utilizing polymer-nanoparticle interactions’, Nat. Commun. Nature Publishing Group, 6, pp. 1–9 (2015). doi:  https://doi.org/10.1038/ncomms7295.
  9. D.Y. Arifin, L.Y. Lee, C.H. Wang, Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems. Adv. Drug Deliv. Rev. 58(12–13), 1274–1325 (2006).  https://doi.org/10.1016/j.addr.2006.09.007 CrossRefGoogle Scholar
  10. K.A. Autio et al., Safety and efficacy of BIND-014, a Docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate Cancer. JAMA Oncol. (2018).  https://doi.org/10.1001/jamaoncol.2018.2168 CrossRefGoogle Scholar
  11. M.A. Azagarsamy et al., Photocontrolled nanoparticles for on-demand release of proteins. Biomacromolecules 13(8), 2219–2224 (2012).  https://doi.org/10.1021/bm300646q. CrossRefGoogle Scholar
  12. A.K. Bajpai et al., ‘Responsive polymers in controlled drug delivery’, Prog. Polym. Sci. Oxford., pp. 1088–1118 (2008). doi:  https://doi.org/10.1016/j.progpolymsci.2008.07.005.CrossRefGoogle Scholar
  13. R.L. Ball, P. Bajaj, K.A. Whitehead, Oral delivery of siRNA lipid nanoparticles: Fate in the GI tract. Sci. Rep. Springer US 8(1), 1–12 (2018).  https://doi.org/10.1038/s41598-018-20632-6 CrossRefGoogle Scholar
  14. P. Bawa et al., ‘Stimuli-responsive polymers and their applications in drug delivery’, Biomed. Mater., p. 15 (2009). doi:  https://doi.org/10.1088/1748-6041/4/2/022001. CrossRefGoogle Scholar
  15. A.M. Bellinger et al., Oral, ultra – Long-lasting drug delivery : Application toward malaria elimination goals. Sci. Transl. Med. 8, 365ra157 (2016).  https://doi.org/10.1126/scitranslmed.aag2374. CrossRefGoogle Scholar
  16. D.G. Birch et al., Long-term follow-up of patients with retinitis Pigmentosa receiving intraocular Ciliary Neurotrophic factor implants. Am J. Ophthalmol. Elsevier 170, 10–14 (2016).  https://doi.org/10.1016/J.AJO.2016.07.013 CrossRefGoogle Scholar
  17. E. Blanco, H. Shen, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33(9), 941–951 (2015).  https://doi.org/10.1038/nbt.3330 CrossRefGoogle Scholar
  18. P.D. Blumenthal, K. Gemzell-Danielsson, M. Marintcheva-Petrova, Tolerability and clinical safety of Implanon®. Eur J Contracept Reprod Health Care 13(sup1), 29–36 (2008).  https://doi.org/10.1080/13625180801960012 CrossRefGoogle Scholar
  19. M.W.B. Bradbury, S.L. Lightman, The blood-brain interface. Eye (Basingstoke) 4(2), 249–254 (1990).  https://doi.org/10.1038/eye.1990.36 CrossRefGoogle Scholar
  20. C. Buttorff, T. Ruder, M. Bauman, Multiple Chronic Conditions in the United States. (2017). doi:  https://doi.org/10.7249/TL221.
  21. M. Cabrera, S. Yeh, T.A. Albini, ‘Sustained-release corticosteroid options’, J. Ophthalmol. (2014). doi:  https://doi.org/10.1155/2014/164692, 1.CrossRefGoogle Scholar
  22. E. Caffarel-Salvador et al., Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: Potential for use in diagnosis and therapeutic drug monitoring. PLoS One 10(12), 1–21 (2015).  https://doi.org/10.1371/journal.pone.0145644 CrossRefGoogle Scholar
  23. D.G. Callanan et al., Treatment of posterior uveitis with a Fluocinolone Acetonide implant. Arch. Ophthalmol. 126(9), 1191 (2008).  https://doi.org/10.1001/archopht.126.9.1191. CrossRefGoogle Scholar
  24. G. Camera-Roda, G.C. Sarti, Mass transport with relaxation in polymers. AICHE J. 36(6), 851–860 (1990).  https://doi.org/10.1002/aic.690360606 CrossRefGoogle Scholar
  25. A. Car et al., PH-responsive PDMS-b-PDMAEMA micelles for intracellular anticancer drug delivery. Biomacromolecules 15(9), 3235–3245 (2014).  https://doi.org/10.1021/bm500919z. CrossRefGoogle Scholar
  26. I.M. Carvalho et al., Sustained drug release by contact lenses for glaucoma treatment - a review. J. Control. Release Elsevier B.V. 202, 76–82 (2015).  https://doi.org/10.1016/j.jconrel.2015.01.023 CrossRefGoogle Scholar
  27. F. Chaudhry, Adverse reaction to Nexplanon®. J. Fam. Plann. Reprod. Health Care 39(4), 231–232 (2013).  https://doi.org/10.1136/jfprhc-2013-100731. CrossRefGoogle Scholar
  28. Y. Cheng et al., Thermally controlled release of anticancer drug from self-assembled γ-substituted amphiphilic poly((ε-caprolactone) micellar nanoparticles. Biomacromolecules 13(7), 2163–2173 (2012).  https://doi.org/10.1021/bm300823y. CrossRefGoogle Scholar
  29. E.Y. Chew et al., ‘Ciliary Neurotrophic factor for macular telangiectasia type 2: Results from a phase 1 safety trial’, Am J. Ophthalmol. Elsevier, 159(4), p. 659–666.e1 (2015). doi:  https://doi.org/10.1016/J.AJO.2014.12.013.CrossRefGoogle Scholar
  30. H. Cho, G.S. Kwon, Thermosensitive poly-(d,l-lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly-(d,l-lactide-co-glycolide) hydrogels for multi-drug delivery. J. Drug Target. 22(7), 669–677 (2014).  https://doi.org/10.3109/1061186X.2014.931406 CrossRefGoogle Scholar
  31. L.Y. Chu, M.R. Prausnitz, Separable arrowhead microneedles. J. Control. Release Elsevier B.V 149(3), 242–249 (2011).  https://doi.org/10.1016/j.jconrel.2010.10.033 CrossRefGoogle Scholar
  32. C.Y.X. Chua et al., ‘Transcutaneously refillable nanofluidic implant achieves sustained level of tenofovir diphosphate for HIV pre-exposure prophylaxis’, J. Control. Release Elsevier, 286, pp. 315–325 (2018). doi:  https://doi.org/10.1016/j.jconrel.2018.08.010.CrossRefGoogle Scholar
  33. M.F. Chung et al., Controlled release of an anti-inflammatory drug using an ultrasensitive ROS-Responsive gas-generating carrier for localized inflammation inhibition. J. Am. Chem. Soc. 137(39), 12462–12465 (2015).  https://doi.org/10.1021/jacs.5b08057 CrossRefGoogle Scholar
  34. M.J. Cima et al., Single compartment drug delivery. J. Control. Release. Elsevier B.V. 190, 157–171 (2014).  https://doi.org/10.1016/j.jconrel.2014.04.049 CrossRefGoogle Scholar
  35. M.C. Cox, C.D. Scripture, W.D. Figg, Leuprolide acetate given by a subcutaneous extended-release injection: Less of a pain? Expert. Rev. Anticancer. Ther. 5(4), 605–611 (2005).  https://doi.org/10.1586/14737140.5.4.605 CrossRefGoogle Scholar
  36. H.R. Culver, J.R. Clegg, N.A. Peppas, Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery. Acc. Chem. Res. 50(2), 170–178 (2017).  https://doi.org/10.1021/acs.accounts.6b00533 CrossRefGoogle Scholar
  37. X.B. D’Journo, V. Vidal, A. Agostini, Intravascular pulmonary migration of a subdermal contraceptive implant. Ann. Thorac. Surg.. Elsevier 99(5), 1828 (2015).  https://doi.org/10.1016/j.athoracsur.2014.12.049 CrossRefGoogle Scholar
  38. S. Dai, P. Ravi, K.C. Tam, pH-responsive polymers: Synthesis, properties and applications. Soft Matter 4(3), 435–449 (2008).  https://doi.org/10.1039/b714741d CrossRefGoogle Scholar
  39. Deloitte (2018) ‘2018 Global life sciences outlook Innovating life sciences in the fourth industrial revolution: Embrace, build, grow’.Google Scholar
  40. S. Diaz et al., A five-year clinical trial of levonorgestrel silastic implants (Norplant TM). Contraception 25(5), 447–456 (1982)CrossRefGoogle Scholar
  41. L. Dong et al., A pH/enzyme-responsive tumor-specific delivery system for doxorubicin. Biomaterials 31(24), 6309–6316 (2010).  https://doi.org/10.1016/j.biomaterials.2010.04.049 CrossRefGoogle Scholar
  42. S. Dong et al., A dual-responsive Supramolecular polymer gel formed by crown ether based molecular recognition. Angew. Chem. Int. Ed. 50(8), 1905–1909 (2011).  https://doi.org/10.1002/anie.201006999 CrossRefGoogle Scholar
  43. N.L. Elstad, K.D. Fowers, OncoGel (ReGel/paclitaxel) - clinical applications for a novel paclitaxel delivery system. Adv. Drug Deliv. Rev. Elsevier B.V. 61(10), 785–794 (2009).  https://doi.org/10.1016/j.addr.2009.04.010 CrossRefGoogle Scholar
  44. A.P. Esser-Kahn et al., ‘Triggered release from polymer capsules’, Macromolecules, pp. 5539–5553 (2011). doi:  https://doi.org/10.1021/ma201014n.CrossRefGoogle Scholar
  45. O.S. Fenton et al., Advances in biomaterials for drug delivery. Adv. Mater. 1705328, 1–29 (2018).  https://doi.org/10.1002/adma.201705328 CrossRefGoogle Scholar
  46. F. Fischel-Ghodsian et al., Enzymatically controlled drug delivery. Proc. Natl. Acad. Sci. 85(7), 2403–2406 (1988).  https://doi.org/10.1073/pnas.85.7.2403 CrossRefGoogle Scholar
  47. S. Freiberg, X.X. Zhu, Polymer microspheres for controlled drug release. Int. J. Pharm. 282(1–2), 1–18 (2004).  https://doi.org/10.1016/j.ijpharm.2004.04.013 CrossRefGoogle Scholar
  48. K. Fu et al., Visual evidence of acidic environment within degrading poly(lactic-co- glycolic acid) (PLGA) microspheres. Pharm. Res. 17(1), 100–106 (2000).  https://doi.org/10.1023/A:1007582911958. MathSciNetCrossRefGoogle Scholar
  49. Y. Fu, W.J. Kao, Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 7(4), 429–444 (2010).  https://doi.org/10.1517/17425241003602259 CrossRefGoogle Scholar
  50. L.K. Fung, W.M. Saltzman, Polymeric implants for cancer chemotherapy. Adv. Drug Deliv. Rev. 26(2–3), 209–230 (1997).  https://doi.org/10.1016/S0169-409X(97)00036-7. CrossRefGoogle Scholar
  51. G.H. Gao et al., The use of pH-sensitive positively charged polymeric micelles for protein delivery. Biomaterials 33(35), 9157–9164 (2012).  https://doi.org/10.1016/j.biomaterials.2012.09.016 CrossRefGoogle Scholar
  52. H. Geng et al., Sustained release of VEGF from PLGA nanoparticles embedded thermo-sensitive hydrogel in full-thickness porcine bladder acellular matrix. (2011). doi:  https://doi.org/10.1186/1556-276X-6-312.CrossRefGoogle Scholar
  53. M. Germain et al., ‘Priming the body to receive the therapeutic agent to redefine treatment benefit/risk profile’, Sci. Rep., 8(1) (2018). doi:  https://doi.org/10.1038/s41598-018-23140-9.
  54. O. Gershanik, P. Jenner, Moving from continuous dopaminergic stimulation to continuous drug delivery in the treatment of Parkinson’s disease. Eur. J. Neurol. 19(12), 1502–1508 (2012).  https://doi.org/10.1111/j.1468-1331.2011.03593.x CrossRefGoogle Scholar
  55. K. Ghasemi Falavarjani, Implantable posterior segment drug delivery devices; novel alternatives to currently available treatments. J. Ophthalmic Vis. Res.. Wolters Kluwer -- Medknow Publications 4(3), 191–193 (2009)Google Scholar
  56. M. Grassi, G. Grassi, Mathematical modelling and controlled drug delivery: Matrix systems. Curr. Drug Deliv. 2(1), 97–116 (2005).  https://doi.org/10.2174/1567201052772906 CrossRefGoogle Scholar
  57. D.R. Griffin et al., Synthesis of photodegradable macromers for conjugation and release of bioactive molecules. Biomacromolecules 14(4), 1199–1207 (2013).  https://doi.org/10.1021/bm400169d. CrossRefGoogle Scholar
  58. G. Gu et al., PEG-co-PCL nanoparticles modified with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy. Biomaterials 34(1), 196–208 (2013a).  https://doi.org/10.1016/j.biomaterials.2012.09.044 CrossRefGoogle Scholar
  59. Z. Gu et al., Injectable Nano-network for glucose-mediated insulin delivery. ACS Nano 7(5), 4194–4201 (2013b).  https://doi.org/10.1021/nn400630x CrossRefGoogle Scholar
  60. P. Guo et al., Nanoparticle elasticity directs tumor uptake. Nat. Commun.. Springer US 9(1), 130 (2018).  https://doi.org/10.1038/s41467-017-02588-9 CrossRefGoogle Scholar
  61. P. Gupta, K. Vermani, S. Garg, Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov. Today 7(10), 569–579 (2002).  https://doi.org/10.1016/S1359-6446(02)02255-9 CrossRefGoogle Scholar
  62. M. Guvendiren, H.D. Lu, J.A. Burdick, Shear-thinning hydrogels for biomedical applications *. Soft Matter 8, 260–272 (2012).  https://doi.org/10.1016/j.addr.2012.09.010. CrossRefGoogle Scholar
  63. D. Han, X. Tong, Y. Zhao, Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir 28(5), 2327–2331 (2012).  https://doi.org/10.1021/la204930n CrossRefGoogle Scholar
  64. A.S. Hasan et al., Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int. J. Pharm. 344(1–2), 53–61 (2007).  https://doi.org/10.1016/j.ijpharm.2007.05.066. CrossRefGoogle Scholar
  65. A. Hatefi, B. Amsden, Biodegradable injectable in situ forming drug delivery systems. J. Control. Release 80(1–3), 9–28 (2002).  https://doi.org/10.1016/S0168-3659(02)00008-1. CrossRefGoogle Scholar
  66. D. Hazirolan, U. Pleyer, Think global--act local: Intravitreal drug delivery systems in chronic noninfectious uveitis. Ophthalmic Res. Karger Publishers 49(2), 59–65 (2013).  https://doi.org/10.1159/000345477 CrossRefGoogle Scholar
  67. C. Hiemstra et al., In vitro and in vivo protein delivery from in situ forming poly(ethylene glycol)-poly(lactide) hydrogels. J. Control. Release 119(3), 320–327 (2007).  https://doi.org/10.1016/j.jconrel.2007.03.014 CrossRefGoogle Scholar
  68. T. Higuchi, Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 52(12), 1145–1149 (1963).  https://doi.org/10.1002/jps.2600521210 CrossRefGoogle Scholar
  69. T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: Progress and challenges. Polymer, 1993–2007 (2008).  https://doi.org/10.1016/j.polymer.2008.01.027 CrossRefGoogle Scholar
  70. A.S. Hoffman, The origins and evolution of “controlled” drug delivery systems. J. Control. Release Elsevier B.V. 132(3), 153–163 (2008).  https://doi.org/10.1016/j.jconrel.2008.08.012 CrossRefGoogle Scholar
  71. A.S. Hoffman, P.S. Stayton, Conjugates of stimuli-responsive polymers and proteins. Prog. Polym. Sci. (Oxford) 32, 922–932 (2007).  https://doi.org/10.1016/j.progpolymsci.2007.05.005 CrossRefGoogle Scholar
  72. M.R. Hoy and E.J. Roche (1993) Taste mask coatings for preparation of chewable pharmaceutical tablets.Google Scholar
  73. T. Hozumi et al. (2018) ‘Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by Schiff’s base formation’, Biomacromolecules, p. acs.biomac.7b01133. doi:  https://doi.org/10.1021/acs.biomac.7b01133 CrossRefGoogle Scholar
  74. J. Hrkach et al., Preclinical development and clinical translation of a PSMA-targeted Docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med. 4(128), 128ra39–128ra39 (2012).  https://doi.org/10.1126/scitranslmed.3003651 CrossRefGoogle Scholar
  75. X. Huang, C.S. Brazel, On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 73(2-3), 121–136 (2001)CrossRefGoogle Scholar
  76. Z.-Z. Huang et al., Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J. (2000).  https://doi.org/10.1096/fj.00-0445fje CrossRefGoogle Scholar
  77. G.J. Jaffe et al., Fluocinolone Acetonide implant (Retisert) for noninfectious posterior uveitis: Thirty-Four–Week Results of a Multicenter Randomized Clinical Study. Ophthalmology. Elsevier 113(6), 1020–1027 (2006).  https://doi.org/10.1016/J.OPHTHA.2006.02.021 CrossRefGoogle Scholar
  78. B. Jeong, A. Gutowska, ‘Lessons from nature: Stimuli-responsive polymers and their biomedical applications’, Trends Biotechnol., pp. 305–311 (2002). doi:  https://doi.org/10.1016/S0167-7799(02)01962-5,20.
  79. R. Jin et al., Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair. Acta Biomater. Acta Materialia Inc. 6(6), 1968–1977 (2010).  https://doi.org/10.1016/j.actbio.2009.12.024 CrossRefGoogle Scholar
  80. B.A. Johnson, Naltrexone long-acting formulation in the treatment of alcohol dependence. Ther. Clin. Risk Manag.. Dove Press 3(5), 741–749 (2007)Google Scholar
  81. H. Kaji et al., Drug delivery devices for retinal diseases. Adv. Drug Deliv. Rev.. Elsevier B.V. 128, 148–157 (2017).  https://doi.org/10.1016/j.addr.2017.07.002 CrossRefGoogle Scholar
  82. N. Kamaly et al., Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 116(4), 2602–2663 (2016).  https://doi.org/10.1021/acs.chemrev.5b00346. CrossRefGoogle Scholar
  83. M. Kastellorizios, F. Papadimitrakopoulos, D.J. Burgess, Multiple tissue response modifiers to promote angiogenesis and prevent the foreign body reaction around subcutaneous implants. J. Control. Release Elsevier B.V. 214, 103–111 (2015).  https://doi.org/10.1016/j.jconrel.2015.07.021 CrossRefGoogle Scholar
  84. N. Kasyapi, K. Dinesh Kumar, A.K. Bhowmick, Influence of microstructure of lactone-based triblock copolymers on drug release behavior of their microspheres. J. Appl. Polym. Sci. 134(37), 1–14 (2017).  https://doi.org/10.1002/app.45284 CrossRefGoogle Scholar
  85. H. Kim, S.M. Jeong, J.W. Park, Electrical switching between vesicles and micelles via redox-responsive self-assembly of amphiphilic rod-coils. J. Am. Chem. Soc. 133(14), 5206–5209 (2011).  https://doi.org/10.1021/ja200297j CrossRefGoogle Scholar
  86. H. Kim, H. Park, S.J. Lee, Effective method for drug injection into subcutaneous tissue. Sci. Rep. Springer US 7(1), 1–11 (2017).  https://doi.org/10.1038/s41598-017-10110-w CrossRefGoogle Scholar
  87. S.W. Kim, Y.H. Bae, T. Okano, Hydrogels: Swelling, Drug Loading, and Release. Pharm. Res. 9(3), 283–290 (1992).  https://doi.org/10.1023/A:1015887213431. CrossRefGoogle Scholar
  88. L.W. Kleiner, J.C. Wright, Y. Wang, Evolution of implantable and insertable drug delivery systems. J. Control. Release Elsevier B.V. 181(1), 1–10 (2014).  https://doi.org/10.1016/j.jconrel.2014.02.006 CrossRefGoogle Scholar
  89. D. Klinger, K. Landfester, Dual stimuli-responsive poly(2-hydroxyethyl methacrylate-co-methacrylic acid) microgels based on photo-cleavable cross-linkers: PH-dependent swelling and light-induced degradation. Macromolecules 44(24), 9758–9772 (2011).  https://doi.org/10.1021/ma201706r CrossRefGoogle Scholar
  90. B. Koch et al., Microfabrication for drug delivery. Materials 9(8) (2016).  https://doi.org/10.3390/ma9080646 CrossRefGoogle Scholar
  91. M. Köllmer et al., Long-term function of alginate-encapsulated islets. Tissue Engineering Part B: Reviews 22(1), ten.teb.2015.0140 (2015).  https://doi.org/10.1089/ten.teb.2015.0140 CrossRefGoogle Scholar
  92. J. Kost, J. Wolfrum, R. Langer, Magnetically enhanced insulin release in diabetic rats. J. Biomed. Mater. Res. 21(12), 1367–1373 (1987).  https://doi.org/10.1002/jbm.820211202 CrossRefGoogle Scholar
  93. D. Lalka, R.K. Griffith, C.L. Cronenberger, The hepatic first-pass metabolism of problematic drugs. J. Clin. Pharmacol. 33(7), 657–669 (1993).  https://doi.org/10.1002/j.1552-4604.1993.tb04720.x CrossRefGoogle Scholar
  94. C. Laloux et al., Continuous cerebroventricular administration of dopamine: A new treatment for severe dyskinesia in Parkinson’s disease? Neurobiol. Dis. The Authors 103, 24–31 (2017).  https://doi.org/10.1016/j.nbd.2017.03.013 CrossRefGoogle Scholar
  95. R.S. Langer, N.A. Peppas, Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 2(4), 201–214 (1981).  https://doi.org/10.1016/0142-9612(81)90059-4 CrossRefGoogle Scholar
  96. C. De Las Heras Alarcón, S. Pennadam, C. Alexander, ‘Stimuli responsive polymers for biomedical applications’, Chem. Soc. Rev. 276–285 (2005). doi:  https://doi.org/10.1039/b406727d, 34.CrossRefGoogle Scholar
  97. J.C. Lauffenburger et al., Association between patient-centered medical homes and adherence to chronic disease medications: A cohort study. Ann. Intern. Med. 166(2), 81–88 (2017).  https://doi.org/10.7326/M15-2659. CrossRefGoogle Scholar
  98. D.G. Leach et al., STINGel: Controlled release of a cyclic dinucleotide for enhanced cancer immunotherapy. Biomaterials. Elsevier Ltd 163, 67–75 (2018).  https://doi.org/10.1016/j.biomaterials.2018.01.035 CrossRefGoogle Scholar
  99. W. Leconet et al., ‘Anti-PSMA/CD3 Bispecific antibody delivery and anti-tumor activity using a polymeric depot formulation’, Mol. Cancer Ther. (2018). p. molcanther.1138.2017. doi:  https://doi.org/10.1158/1535-7163.MCT-17-1138 CrossRefGoogle Scholar
  100. B.K. Lee, Y. Yun, K. Park, PLA micro- and nano-particles. Adv. Drug Deliv. Rev. Elsevier B.V. 107, 176–191 (2016).  https://doi.org/10.1016/j.addr.2016.05.020 CrossRefGoogle Scholar
  101. E.S. Lee et al., A virus-mimetic Nanogel vehicle. Angew. Chem. Int. Ed. 47(13), 2418–2421 (2008).  https://doi.org/10.1002/anie.200704121 CrossRefGoogle Scholar
  102. H. Lee et al., A photo-degradable gene delivery system for enhanced nuclear gene transcription. Biomaterials 35(3), 1040–1049 (2014).  https://doi.org/10.1016/j.biomaterials.2013.10.030 CrossRefGoogle Scholar
  103. P.I. Lee, Kinetics of drug release from hydrogel matrices. J. Control. Release 2, 277–288 (1985).  https://doi.org/10.1016/0168-3659(85)90051-3 CrossRefGoogle Scholar
  104. S.-M. Lee et al., Multifunctional nanoparticles for targeted Chemophotothermal treatment of Cancer cells. Angew. Chem. Int. Ed. 50(33), 7581–7586 (2011).  https://doi.org/10.1002/anie.201101783 CrossRefGoogle Scholar
  105. S.H. Lee, Y.B. Choy, Implantable devices for sustained, intravesical drug delivery. Int. Neurourol. J. 20(2), 101–106 (2016).  https://doi.org/10.5213/inj.1632664.332 CrossRefGoogle Scholar
  106. M.S. Lesniak, H. Brem, Targeted therapy for brain Tumours. Nat. Rev. Drug Discov. 3(June), 499–508 (2004).  https://doi.org/10.1016/B978-0-12-397927-8.00005-1. CrossRefGoogle Scholar
  107. J. Li, D.J. Mooney, Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 1(12) (2016).  https://doi.org/10.1038/natrevmats.2016.71
  108. M.H. Li, P. Keller, Stimuli-responsive polymer vesicles. Soft Matter 5(5), 927–937 (2009).  https://doi.org/10.1039/b815725a CrossRefGoogle Scholar
  109. Y. Li, F. Wang, H. Cui, Peptide-based supramolecular hydrogels for delivery of biologics. Bioeng. Translat. Med. 1(3), 306–322 (2016).  https://doi.org/10.1002/btm2.10041 CrossRefGoogle Scholar
  110. D. Ling et al., Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc. 136(15), 5647–5655 (2014).  https://doi.org/10.1021/ja4108287 CrossRefGoogle Scholar
  111. D. Liu et al., The smart drug delivery system and its clinical potential. Theranostics 6(9), 1306–1323 (2016).  https://doi.org/10.7150/thno.14858 CrossRefGoogle Scholar
  112. F. Liu, M.W. Urban, Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 35(1–2), 3–23 (2010).  https://doi.org/10.1016/j.progpolymsci.2009.10.002. CrossRefGoogle Scholar
  113. J. Liu et al., Triggerable tough hydrogels for gastric resident dosage forms. Nat. Commun.. Springer US 8(1), 1–9 (2017).  https://doi.org/10.1038/s41467-017-00144-z CrossRefGoogle Scholar
  114. R. Lo et al., A refillable microfabricated drug delivery device for treatment of ocular diseases. Lab Chip 8(7), 1027 (2008).  https://doi.org/10.1039/b804690e CrossRefGoogle Scholar
  115. C. Lu et al., Hydrogel Containing Silica Shell Cross-linked Micelles for Ocular Drug Delivery. Int J Drug Dev Res 102, 627–637 (2012).  https://doi.org/10.1002/jps CrossRefGoogle Scholar
  116. Y. Lu et al., Bioresponsive materials. Nat. Rev. Mater. 2(1) (2016).  https://doi.org/10.1038/natrevmats.2016.75
  117. M.F. Maitz et al., Bio-responsive polymer hydrogels homeostatically regulate blood coagulation. Nat. Commun. 4, 2168 (2013).  https://doi.org/10.1038/ncomms3168 CrossRefGoogle Scholar
  118. A. Mandal et al., Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J. Control. Release Elsevier B.V. 248, 96–116 (2017).  https://doi.org/10.1016/j.jconrel.2017.01.012 CrossRefGoogle Scholar
  119. T. Manouras, M. Vamvakaki, ‘Field responsive materials: Photo-, electro-, magnetic- and ultrasound-sensitive polymers’, Polym. Chem. Royal Society of Chemistry, 8(1), pp. 74–96 (2017). doi:  https://doi.org/10.1039/c6py01455k.CrossRefGoogle Scholar
  120. C.E. Markwalter, R.K. Prud’homme, Design of a Small-Scale Multi-Inlet Vortex Mixer for scalable nanoparticle production and application to the encapsulation of biologics by inverse flash NanoPrecipitation. J. Pharm. Sci.. Elsevier Ltd 107, 1–7 (2018).  https://doi.org/10.1016/j.xphs.2018.05.003 CrossRefGoogle Scholar
  121. D.F. Martin et al., Treatment of cytomegalovirus retinitis with an intraocular sustained-release Ganciclovir implant. Arch. Ophthalmol. American Medical Association 112(12), 1531 (1994).  https://doi.org/10.1001/archopht.1994.01090240037023 CrossRefGoogle Scholar
  122. D.F. Martin et al., Oral Ganciclovir for patients with cytomegalovirus retinitis treated with a Ganciclovir implant. N. Engl. J. Med.. Massachusetts Medical Society 340(14), 1063–1070 (1999).  https://doi.org/10.1056/NEJM199904083401402. CrossRefGoogle Scholar
  123. K.J. McHugh et al., Fabrication of fillable microparticles and other complex 3D microstructures. Science 1142, 1138–1142 (2017).  https://doi.org/10.1126/science.aaf7447. CrossRefGoogle Scholar
  124. K.H. Min et al., Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J. Control. Release 144(2), 259–266 (2010).  https://doi.org/10.1016/j.jconrel.2010.02.024 CrossRefGoogle Scholar
  125. S. Mitragotri, D. Blankschtein, R. Langer, Ultrasound-mediated transdermal protein delivery. Science 269(5225), 850–853 (1995).  https://doi.org/10.1126/science.7638603 CrossRefGoogle Scholar
  126. R.I. Moustafine, I.M. Zaharov, V.A. Kemenova, Physicochemical characterization and drug release properties of Eudragit® E PO/Eudragit® L 100-55 interpolyelectrolyte complexes. Eur. J. Pharm. Biopharm. 63(1), 26–36 (2006).  https://doi.org/10.1016/j.ejpb.2005.10.005 CrossRefGoogle Scholar
  127. M.P. Mullarney, T.A.P. Seery, R.A. Weiss, Drug diffusion in hydrophobically modified N,N-dimethylacrylamide hydrogels. Polymer 47(11), 3845–3855 (2006).  https://doi.org/10.1016/j.polymer.2006.03.096 CrossRefGoogle Scholar
  128. S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive Nanocarriers for drug delivery. Nat. Mater.. Nature Publishing Group 12, 991–1003 (2013).  https://doi.org/10.1246/cl.151176. CrossRefGoogle Scholar
  129. R.S. Navath et al., Injectable PAMAM Dendrimer–PEG hydrogels for the treatment of genital infections: Formulation and in vitro and in vivo evaluation. Mol. Pharm. 8(4), 1209–1223 (2011).  https://doi.org/10.1021/mp200027z CrossRefGoogle Scholar
  130. B. Nilsson et al., The role of complement in biomaterial-induced inflammation. Mol. Immunol. 44(1–3), 82–94 (2007).  https://doi.org/10.1016/j.molimm.2006.06.020. MathSciNetCrossRefGoogle Scholar
  131. T. Okano et al., Thermally on-off switching polymers for drug permeation and release. J. Control. Release 11(1–3), 255–265 (1990).  https://doi.org/10.1016/0168-3659(90)90138-J. CrossRefGoogle Scholar
  132. L. Osterberg, T. Blaschke, Adherence to medication. N. Engl. J. Med. 353(5), 487–497 (2005).  https://doi.org/10.1056/NEJMra050100 CrossRefGoogle Scholar
  133. R.F. Pagels, R.K. Prud’Homme, Polymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeutics. J. Control. Release Elsevier B.V. 219, 519–535 (2015).  https://doi.org/10.1016/j.jconrel.2015.09.001 CrossRefGoogle Scholar
  134. M. Paolini et al., Nano-sized cytochrome P450 3A4 inhibitors to block hepatic metabolism of docetaxel. Int. J. Nanomedicine 12, 5537–5556 (2017).  https://doi.org/10.2147/IJN.S141145 CrossRefGoogle Scholar
  135. K.M. Park et al., In situ cross-linkable gelatin-poly(ethylene glycol)-tyramine hydrogel via enzyme-mediated reaction for tissue regenerative medicine. J. Mater. Chem. 21(35), 13180–13187 (2011).  https://doi.org/10.1039/c1jm12527c CrossRefGoogle Scholar
  136. M.R. Park et al., Sustained delivery of human growth hormone using a polyelectrolyte complex-loaded thermosensitive polyphosphazene hydrogel. J. Control. Release Elsevier B.V. 147(3), 359–367 (2010).  https://doi.org/10.1016/j.jconrel.2010.07.126 CrossRefGoogle Scholar
  137. T.G. Park, W. Lu, G. Crotts, Importance of in vitro experimental conditions on protein release kinetics, stability and polymer degradation in protein encapsulated poly (d,l-lactic acid-co-glycolic acid) microspheres. J. Control. Release 33(2), 211–222 (1995).  https://doi.org/10.1016/0168-3659(94)00084-8 CrossRefGoogle Scholar
  138. C. Pedroso et al., Implant site Nexplanon reaction? BMJ Case Reports 2015, 2014–2015 (2015).  https://doi.org/10.1136/bcr-2014-206256 Google Scholar
  139. N.A. Peppas et al., Modelling of drug diffusion through swellable polymeric systems. J. Membr. Sci. 7(3), 241–253 (1980).  https://doi.org/10.1016/S0376-7388(00)80471-8 CrossRefGoogle Scholar
  140. N.A. Peppas et al., Poly(ethylene glycol)-containing hydrogels in drug delivery. J. Control. Release 62(1–2), 81–87 (1999).  https://doi.org/10.1016/S0168-3659(99)00027-9. CrossRefGoogle Scholar
  141. N.A. Peppas, A.R. Khare, Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv. Drug Deliv. Rev. 11(1–2), 1–35 (1993).  https://doi.org/10.1016/0169-409X(93)90025-Y CrossRefGoogle Scholar
  142. N.A. Peppas, J.J. Sahlin, A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 57(2), 169–172 (1989).  https://doi.org/10.1016/0378-5173(89)90306-2 CrossRefGoogle Scholar
  143. N.A. Peppas, S.L. Wright, Drug diffusion and binding in ionizable interpenetrating networks from poly(vinyl alcohol) and poly(acrylic acid). Eur. J. Pharm. Biopharm. 46(1), 15–29 (1998).  https://doi.org/10.1016/S0939-6411(97)00113-6 CrossRefGoogle Scholar
  144. P. Periti, T. Mazzei, E. Mini, Clinical pharmacokinetics of depot leuprorelin. Clin. Pharmacokinet. 41(7), 485–504 (2002).  https://doi.org/10.2165/00003088-200241070-00003. CrossRefGoogle Scholar
  145. N.M. Pinkerton et al., Gelation chemistries for the encapsulation of nanoparticles in composite gel microparticles for lung imaging and drug delivery. Biomacromolecules 15(1), 252–261 (2014).  https://doi.org/10.1021/bm4015232. CrossRefGoogle Scholar
  146. C.G. Pitt et al., Triggered drug delivery systems. J. Control. Release. Elsevier Science Publishers B.V 2, 363–374 (1985)CrossRefGoogle Scholar
  147. K. Podual, F.J. Doyle, N.A. Peppas, Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J. Control. Release. 67(1), 19-17 (2000).CrossRefGoogle Scholar
  148. S.M. Pond, T.N. Tozer, First-pass elimination. Basic concepts and clinical consequences. Clin. Pharmacokinet. 9(1), 1–25 (1984).  https://doi.org/10.2165/00003088-198409010-00001 CrossRefGoogle Scholar
  149. M.R. Prausnitz, Engineering microneedle patches for vaccination and drug delivery to skin. Annual Rev Chem Biomolecular Eng 8(1), 177–200 (2017).  https://doi.org/10.1146/annurev-chembioeng-060816-101514 CrossRefGoogle Scholar
  150. B.P. Purcell et al., Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat. Mater. 13(6), 653–661 (2014).  https://doi.org/10.1038/nmat3922 CrossRefGoogle Scholar
  151. P.L. Ritger, N.A. Peppas, A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 5(1), 23–36 (1987).  https://doi.org/10.1016/0168-3659(87)90034-4 CrossRefGoogle Scholar
  152. N.G. Rouphael et al., The safety, immunogenicity, and acceptability of inactivated influenza vaccine delivered by microneedle patch (TIV-MNP 2015): A randomised, partly blinded, placebo-controlled, phase 1 trial. Lancet 390(10095), 649–658 (2017).  https://doi.org/10.1016/S0140-6736(17)30575-5 CrossRefGoogle Scholar
  153. S. Rowlands, D. Mansour, M. Walling, Intravascular migration of contraceptive implants: Two more cases. Contraception. Elsevier 95(2), 211–214 (2017).  https://doi.org/10.1016/j.contraception.2016.07.015 CrossRefGoogle Scholar
  154. B.A. Sabel et al., Extended levodopa release from a subcutaneously implanted polymer matrix in rats. Ann. Neurol. 28(5), 714–717 (1990).  https://doi.org/10.1002/ana.410280519 CrossRefGoogle Scholar
  155. C. Sanson et al., Doxorubicin loaded magnetic Polymersomes: Theranostic Nanocarriers for MR imaging and magneto-chemotherapy. ACS Nano 5(2), 1122–1140 (2011).  https://doi.org/10.1021/nn102762f CrossRefGoogle Scholar
  156. O. Sartor, Eligard®6: A new form of treatment for prostate Cancer. Eur. Urol. Suppl. 5(18), 905–910 (2006).  https://doi.org/10.1016/j.eursup.2006.08.006 CrossRefGoogle Scholar
  157. V.R. Sastri, Plastics in medical devices : properties, requirements, and applications. Massachusetts: Elsevier Inc. (2010).CrossRefGoogle Scholar
  158. N.S. Satarkar, J. Zach Hilt, Hydrogel nanocomposites as remote-controlled biomaterials. Acta Biomater. 4(1), 11–16 (2008).  https://doi.org/10.1016/j.actbio.2007.07.009 CrossRefGoogle Scholar
  159. P. Schattling, F.D. Jochum, P. Theato, ‘Multi-stimuli responsive polymers-the all-in-one talents’, Polym. Chem., pp. 25–36 (2014). doi:  https://doi.org/10.1039/c3py00880k CrossRefGoogle Scholar
  160. D. Schmaljohann, Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58(15), 1655–1670 (2006).  https://doi.org/10.1016/j.addr.2006.09.020 CrossRefGoogle Scholar
  161. S. Segal, A new delivery system for contraceptive steroids. Am. J. Obstet. Gynecol. 157(4 Pt 2), 1090–1092 (1987)CrossRefGoogle Scholar
  162. V. Segura-Ibarra et al., Nanoparticles administered intrapericardially enhance payload myocardial distribution and retention. J. Control. Release. Elsevier B.V. (2017).  https://doi.org/10.1016/j.jconrel.2017.07.012 CrossRefGoogle Scholar
  163. B.B. Seo et al., The biological efficiency and bioavailability of human growth hormone delivered using injectable, ionic, thermosensitive poly(organophosphazene)-polyethylenimine conjugate hydrogels. Biomaterials. Elsevier Ltd 32(32), 8271–8280 (2011).  https://doi.org/10.1016/j.biomaterials.2011.07.033 CrossRefGoogle Scholar
  164. L. Serra, J. Doménech, N.A. Peppas, Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27(31), 5440–5451 (2006).  https://doi.org/10.1016/j.biomaterials.2006.06.011 CrossRefGoogle Scholar
  165. H. Shibata et al., Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc. Natl. Acad. Sci. 107(42), 17894–17898 (2010).  https://doi.org/10.1073/pnas.1006911107 CrossRefGoogle Scholar
  166. T. Shirakura et al., ‘Hydrogel nanoparticles with thermally controlled drug release’, ACS Macro Lett. UTC, 3(7), pp. 602–606 (2014). doi:  https://doi.org/10.1021/mz500231e.CrossRefGoogle Scholar
  167. R.A. Siegel and M.J. Rathbone (2012) ‘Fundamentals and Applications of Controlled Release Drug Delivery’, pp. 19–44. doi:  https://doi.org/10.1007/978-1-4614-0881-9.Google Scholar
  168. J. Siepmann, N.A. Peppas, Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 48(2–3), 139–157 (2001).  https://doi.org/10.1016/S0169-409X(01)00112-0. CrossRefGoogle Scholar
  169. P.A. Sieving et al., Ciliary neurotrophic factor (CNTF) for human retinal degeneration: Phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc. Natl. Acad. Sci. 103(10), 3896–3901 (2006).  https://doi.org/10.1073/pnas.0600236103 CrossRefGoogle Scholar
  170. E.A. Silva et al., Material-based deployment enhances efficacy of endothelial progenitor cells. Proc. Natl. Acad. Sci. 105(38), 14347–14352 (2008).  https://doi.org/10.1073/pnas.0803873105 CrossRefGoogle Scholar
  171. E.A. Silva, D.J. Mooney, Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J. Thromb. Haemost. 5, 590–598 (2007)CrossRefGoogle Scholar
  172. J. Smith et al., New and emerging technologies for the treatment of inherited retinal diseases: A horizon scanning review. Eye. Nature Publishing Group 29(9), 1131–1140 (2015).  https://doi.org/10.1038/eye.2015.115. CrossRefGoogle Scholar
  173. R.H. Staff et al., Patchy nanocapsules of poly(vinylferrocene)-based block copolymers for redox-responsive release. ACS Nano 6(10), 9042–9049 (2012).  https://doi.org/10.1021/nn3031589 CrossRefGoogle Scholar
  174. R.J. Stenekes et al., Controlled release of liposomes from biodegradable dextran microspheres: A novel delivery concept. Pharm. Res. 17(6), 690–695 (2000).  https://doi.org/10.1023/a:1007526114744. CrossRefGoogle Scholar
  175. M.A.C. Stuart et al., Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 101–113 (2010).  https://doi.org/10.1038/nmat2614. CrossRefGoogle Scholar
  176. Z. Sui, W.J. King, W.L. Murphy, Protein-based hydrogels with tunable dynamic responses. Adv. Funct. Mater. 18(12), 1824–1831 (2008).  https://doi.org/10.1002/adfm.200701288 CrossRefGoogle Scholar
  177. M.J. Sullivan, Allergy to Nexplanon®. J. Family Plan. Reprod. Health Care 38(4), 272.1–272.27272 (2012).  https://doi.org/10.1136/jfprhc-2012-100366 CrossRefGoogle Scholar
  178. E.M. Sussman et al., Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann. Biomed. Eng. 42(7), 1508–1516 (2014).  https://doi.org/10.1007/s10439-013-0933-0 CrossRefGoogle Scholar
  179. J. Szebeni et al., Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: Prediction and prevention. Adv. Drug Deliv. Rev. Elsevier B.V. 63(12), 1020–1030 (2011).  https://doi.org/10.1016/j.addr.2011.06.017 CrossRefGoogle Scholar
  180. T. Takato et al., Preclinical and clinical research on bone and cartilage regenerative medicine in Oral and maxillofacial region. Oral Sci. Int.. Japanese Stomatological Society 11(2), 45–51 (2014).  https://doi.org/10.1016/S1348-8643(14)00008-1. CrossRefGoogle Scholar
  181. M.W. Tibbitt et al., Synthesis and application of photodegradable microspheres for spatiotemporal control of protein delivery. J. Biomed. Mater. Res. - Part A 100 A(7), 1647–1654 (2012).  https://doi.org/10.1002/jbm.a.34107 CrossRefGoogle Scholar
  182. M.W. Tibbitt, J.E. Dahlman, R. Langer, Emerging Frontiers in Drug Delivery. J. Am. Chem. Soc. 138(3), 704–717 (2016).  https://doi.org/10.1021/jacs.5b09974 CrossRefGoogle Scholar
  183. G. Tiwari et al., Drug delivery systems: An updated review. Int. J. Pharmaceut. Investig. 2(1), 2 (2012).  https://doi.org/10.4103/2230-973X.96920 CrossRefGoogle Scholar
  184. D.J.H. Tng et al., Approaches and challenges of engineering implantable microelectromechanical systems (MEMS) drug delivery systems for in vitro and in vivo applications. Micromachines 3(4), 615–631 (2012).  https://doi.org/10.3390/mi3040615 CrossRefGoogle Scholar
  185. X. Tong et al., Long-term controlled protein release from poly(ethylene glycol) hydrogels by modulating mesh size and degradation. Macromol. Biosci. 15(12), 1679–1686 (2015).  https://doi.org/10.1002/mabi.201500245 CrossRefGoogle Scholar
  186. K.M. Tsoi et al., Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 1(August), 1–10 (2016).  https://doi.org/10.1038/nmat4718. CrossRefGoogle Scholar
  187. S.Y. Tzeng et al., Thermostabilization of inactivated polio vaccine in PLGA-based microspheres for pulsatile release. J. Control. Release The Authors 233, 101–113 (2016).  https://doi.org/10.1016/j.jconrel.2016.05.012 CrossRefGoogle Scholar
  188. S.Y. Tzeng et al., ‘Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response’, Proc. Natl. Acad. Sci., (21), p. 201720970 (2018). doi:  https://doi.org/10.1073/pnas.1720970115, 115, E5269.CrossRefGoogle Scholar
  189. K.E. Uhrich et al., Polymeric systems for controlled drug release. Chem. Rev. 99(11), 3181–3198 (1999).  https://doi.org/10.1021/cr940351u CrossRefGoogle Scholar
  190. A.J. Vegas et al., Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22(3), 306–311 (2016).  https://doi.org/10.1038/nm.4030. CrossRefGoogle Scholar
  191. O. Veiseh et al., Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14(6), 643–651 (2015).  https://doi.org/10.1038/nmat4290 CrossRefGoogle Scholar
  192. A. Venuta et al., Post-nano strategies for drug delivery: Multistage porous silicon microvectors. J. Mater. Chem. B Royal Society of Chemistry 5(2), 207–219 (2017).  https://doi.org/10.1039/C6TB01978A CrossRefGoogle Scholar
  193. C. Vogeli et al., Multiple chronic conditions: Prevalence, health consequences, and implications for quality, care management, and costs. J. Gen. Intern. Med. 22(SUPPL. 3), 391–395 (2007).  https://doi.org/10.1007/s11606-007-0322-1. CrossRefGoogle Scholar
  194. B. Wang et al., Glucose-responsive micelles from self-assembly of poly(ethylene glycol)-a-poly(acrylic acid-co-acrylamidophenylboronic acid) and the controlled release of insulin. Langmuir 25(21), 12522–12528 (2009).  https://doi.org/10.1021/la901776a CrossRefGoogle Scholar
  195. J. Wang et al., Drug delivery implants in the treatment of vitreous inflammation. Mediat. Inflamm. Hindawi 2013, 780634 (2013).  https://doi.org/10.1155/2013/780634 CrossRefGoogle Scholar
  196. F.M. Weaver et al., Bilateral deep brain stimulation vs best medical therapy for patients. J. Am. Med. Assoc. 301(1), 63–73 (2014).  https://doi.org/10.1001/jama.2008.929. CrossRefGoogle Scholar
  197. K.J. Widder et al., Tumor remission in Yoshida sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc. Natl. Acad. Sci. USA. 78(1), 579–581 (1981)CrossRefGoogle Scholar
  198. S. Wilhelm et al., Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1, 1–12 (2016).  https://doi.org/10.1038/natrevmats.2016.14 CrossRefGoogle Scholar
  199. C. Wong et al., Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl. Acad. Sci. 108(6), 2426–2431 (2011).  https://doi.org/10.1073/pnas.1018382108 CrossRefGoogle Scholar
  200. R. Xu et al., An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nat. Biotechnol. 34(4), 414–418 (2016).  https://doi.org/10.1038/nbt.3506 CrossRefGoogle Scholar
  201. Q. Yan et al., Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. J. Am. Chem. Soc. UTC 132(27), 9268–9270 (2010).  https://doi.org/10.1021/ja1027502 CrossRefGoogle Scholar
  202. X. Yan et al., Stimuli-responsive supramolecular polymeric materials. Chem. Soc. Rev., 6042–6065 (2012).  https://doi.org/10.1039/c2cs35091b CrossRefGoogle Scholar
  203. V. Yesilyurt et al., Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties. Adv. Mater. 28(1), 86–91 (2016).  https://doi.org/10.1002/adma.201502902 CrossRefGoogle Scholar
  204. L. Yu, J. Ding, Injectable hydrogels as unique biomedical materials. Chem. Soc. Rev. 37(8), 1473–1481 (2008).  https://doi.org/10.1039/b713009k CrossRefGoogle Scholar
  205. K.C.J. Yuen, B.S. Miller, B.M.K Biller, ‘The current state of long-acting growth hormone preparations for growth hormone therapy.’, Curr. Opin. Endocrinol. Diabetes Obes. p. 1 (2018). doi:  https://doi.org/10.1097/MED.0000000000000416. CrossRefGoogle Scholar
  206. J. Zhang et al., The targeted behavior of thermally responsive nanohydrogel evaluated by NIR system in mouse model. J. Control. Release 131(1), 34–40 (2008).  https://doi.org/10.1016/j.jconrel.2008.07.019 CrossRefGoogle Scholar
  207. S. Zhang et al., An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease. Sci. Transl. Med. 7(300), 300ra128 (2015a).  https://doi.org/10.1126/scitranslmed.aaa5657 CrossRefGoogle Scholar
  208. Y. Zhang et al., Active targeting of tumors through conformational epitope imprinting. Angewandte Chemie - International Edition. Wiley-Blackwell 54(17), 5157–5160 (2015b).  https://doi.org/10.1002/anie.201412114 CrossRefGoogle Scholar
  209. Y.N. Zhang et al., Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release. Elsevier B.V. 240, 332–348 (2016).  https://doi.org/10.1016/j.jconrel.2016.01.020 CrossRefGoogle Scholar
  210. L. Zhu, P. Kate, V.P. Torchilin, Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 6(4), 3491–3498 (2012).  https://doi.org/10.1021/nn300524f CrossRefGoogle Scholar
  211. M. Zilberman et al., in Handbook of experimental pharmacology, ed. by M. Schafer-Korting. Drug-eluting medical implants (Springer, Verlag, 2010), pp. 299–341.  https://doi.org/10.1007/978-3-642-00477-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations