Biomedical Microdevices

, 21:27 | Cite as

CNT bundle-based thin intracochlear electrode array

  • Gwang Jin Choi
  • Tae Mok Gwon
  • Doo Hee Kim
  • Junbeom Park
  • Seung Min Kim
  • Seung Ha Oh
  • Yoonseob LimEmail author
  • Sang Beom JunEmail author
  • Sung June Kim


Objective: It is known that the insertion of the intracochlear electrode is critical procedure because the damage around cochlear structures can deteriorate hearing restoration. To reduce the trauma during the electrode insertion surgery, we developed a thin and flexible intracochlear electrode array constructed with carbon nanotube (CNT) bundles. Methods: Each CNT bundle was used for an individual electrode channel after coated with parylene C for insulation. By encapsulating eight CNT bundles with silicone elastomer, an 8-channel intracochlear electrode array was fabricated. The mechanical and electrochemical characteristics were assessed to evaluate the flexibility and feasibility of the electrode as a stimulation electrode. The functionality of the electrode was confirmed by electrically evoked auditory brainstem responses (eABR) recorded from a rat. Results: The proposed electrode has a thickness of 135 μm at the apex and 395 μm at the base. It was demonstrated that the CNT bundle-based electrodes require 6-fold the lower insertion force than metal wire-based electrodes. The electrode impedance and the cathodic charge storage capacitance (CSCc) were 2.70 kΩ ∠-20.4° at 1 kHz and − 708 mC/cm2, respectively. The eABR waves III and V were observed when stimulation current is greater than 50 μA. Conclusion: A thin and flexible CNT bundle-based intracochlear electrode array was successfully developed. The feasibility of the proposed electrode was shown in terms of mechanical and electrochemical characteristics. A proposed CNT bundle-based intracochlear electrode may reduce the risk of trauma during electrode insertion surgery.


Carbon nanotube fiber Intracochlear electrode array Neural interface Soft neural microelectrodes 



This work was supported in part by the CABMC grant funded by the Defense Acquisition Program Administration (UD170030ID) of Korea, in part by Business for Startup growth and technological development (TIPS Program) funded by Korea Small and Medium Business Administration in 2017 under Grants No. S2442573, in part by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (2017-0-00432, Development of non-invasive integrated BCI SW platform to control home appliances and external devices by user’s thought via AR/VR interface), in part by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI17C1648), and in part by the National Research Foundation (NRF) of Korea (NRF-2017R1A2B4006604), MEST as GFP (CISS-2012M3A6A054204).

We also thank Dr. Taek Dong Chung at Department of Chemistry, Seoul National University, for his generous comments on electrochemical properties of electrode materials. Also, we thank Shinyong Shim at Department of Electrical and Computer Engineering, Seoul National University, for offering a custom-made pulse generator.

Supplementary material

10544_2019_384_MOESM1_ESM.pdf (190 kb)
ESM 1 (PDF 189 kb)


  1. S.K. An, S.-I. Park, S.B. Jun, C.J. Lee, K.M. Byun, J.H. Sung, et al., Design for a simplified cochlear implant system. IEEE Trans. Biomed. Eng. 54(6), 973–982 (2007)CrossRefGoogle Scholar
  2. A. Aschendorff, T. Klenzner, B. Richter, R. Kubalek, H. Nagursky, R. Laszig, Evaluation of the HiFocus® electrode array with positioner in human temporal bones. J. Laryngol. Otol. 117(7), 527–531 (2003)CrossRefGoogle Scholar
  3. E. Bas, J. Bohorquez, S. Goncalves, E. Perez, C.T. Dinh, C. Garnham, et al., Electrode array-eluted dexamethasone protects against electrode insertion trauma induced hearing and hair cell losses, damage to neural elements, increases in impedance and fibrosis: A dose response study. Hear. Res. 337, 12–24 (2016)CrossRefGoogle Scholar
  4. S. Berrettini, F. Forli, S. Passetti, Preservation of residual hearing following cochlear implantation: Comparison between three surgical techniques. J. Laryngol. Otol. 122(3), 246–252 (2008)CrossRefGoogle Scholar
  5. A. Bianco, K. Kostarelos, C.D. Partidos, M. Prato, Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 5, 571–577 (2005)CrossRefGoogle Scholar
  6. P. Busby, K. Plant, L. Whitford, Electrode impedance in adults and children using the nucleus 24 cochlear implant system. Cochlear Implant. Int. 3(2), 87–103 (2002)CrossRefGoogle Scholar
  7. J.A. Chikar, J.L. Hendricks, S.M. Richardson-Burns, Y. Raphael, B.E. Pfingst, D.C.J.B. Martin, The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomater. 33(7), 1982–1990 (2012)CrossRefGoogle Scholar
  8. H. Choo, Y. Jung, Y. Jeong, H.C. Kim, B.-C.J.C.L. Ku, Fabrication and applications of carbon nanotube fibers. Carbon Lett. 13(4), 191–204 (2012)CrossRefGoogle Scholar
  9. M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: Present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRefGoogle Scholar
  10. A.A. Eshraghi, N.W. Yang, T.J. Balkany, Comparative study of cochlear damage with three perimodiolar electrode designs. Laryngoscope 113(3), 415–419 (2003)CrossRefGoogle Scholar
  11. L.M. Friesen, R.V. Shannon, D. Baskent, X. Wang, Speech recognition in noise as a function of the number of spectral channels: Comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am. 110(2), 1150–1163 (2001)CrossRefGoogle Scholar
  12. S. Gallégo, B. Frachet, C. Micheyl, E. Truy, L. Collet, Cochlear implant performance and electrically-evoked auditory brain-stem response characteristics. Electroencephalogr. Clin. Neurophysiol. Potential Sect. 108(6), 521–525 (1998)CrossRefGoogle Scholar
  13. B.J. Gantz, C. Turner, K.E. Gfeller, M.W. Lowder, Preservation of hearing in cochlear implant surgery: Adva ntages of combined electrical and acoustical speech processing. Laryngoscope 115(5), 796–802 (2005)CrossRefGoogle Scholar
  14. W. Gstoettner, J. Kiefer, W.-D. Baumgartner, S. Pok, S. Peters, O. Adunka, Hearing preservation in cochlear implantation for electric acoustic stimulation. Acta Otolaryngol. 124(4), 348–352 (2004)CrossRefGoogle Scholar
  15. T.M. Gwon, K.S. Min, J.H. Kim, S.H. Oh, H.S. Lee, M.-H. Park, et al., Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion. Biomed. Microdevices 17(2), 1–12 (2015)CrossRefGoogle Scholar
  16. S.-I. Hatsushika, R.K. Shepherd, Y.C. Tong, G.M. Clark, S. Funasaka, Dimensions of the scala tympani in the human and cat with reference to cochlear implants. Ann. Otol. Rhinol. Laryngol. 99(11), 871–876 (1990)CrossRefGoogle Scholar
  17. S. Helbig, Y. Adel, T. Rader, T. Stöver, U. Baumann, Long-term hearing preservation outcomes after cochlear implantation for electric-acoustic stimulation. Otol. Neurotol. 37(9), e353–e359 (2016)CrossRefGoogle Scholar
  18. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)CrossRefGoogle Scholar
  19. C. James, K. Albegger, R. Battmer, S. Burdo, N. Deggouj, O. Deguine, et al., Preservation of residual hearing with cochlear implantation: How and why. Acta Otolaryngol. 125(5), 481–491 (2005)CrossRefGoogle Scholar
  20. C. Jolly, J. Mueller, S. Helbig, S. Usami, New trends with cochlear implant electrodes. Otol. Jpn. 20(3), 239–246 (2010)Google Scholar
  21. J. Kang, L. Chen, Y. Hou, C. Li, T. Fujita, X. Lang, et al., Electroplated thick manganese oxide films with ultrahigh capacitance. Adv. Eng. Mater. 3(7), 857–863 (2013)CrossRefGoogle Scholar
  22. H. Kha, B. Chen, G.M. Clark, R. Jones, Stiffness properties for nucleus standard straight and contour electrode arrays. Med. Eng. Phys. 26(8), 677–685 (2004)CrossRefGoogle Scholar
  23. K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, et al., High-performance carbon nanotube fiber. Science 318(5858), 1892–1895 (2007)CrossRefGoogle Scholar
  24. X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 6(4), 232 (2011)CrossRefGoogle Scholar
  25. A.-A.D. Lassig, T.A. Zwolan, S.A. Telian, Cochlear implant failures and revision. Otol. Neurotol. 26(4), 624–634 (2005)CrossRefGoogle Scholar
  26. Y.-L. Li, I.A. Kinloch, A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304(5668), 276–278 (2004)CrossRefGoogle Scholar
  27. X. Li, Y. Fan, F. Watari, Current investigations into carbon nanotubes for biomedical application. Biomed. Mater. 5(2), 022001 (2010)CrossRefGoogle Scholar
  28. K.S. Min, S.H. Oh, M.-H. Park, J. Jeong, S.J. Kim, A polymer-based multichannel cochlear electrode array. Otol. Neurotol. 35(7), 1179–1186 (2014)Google Scholar
  29. R.A. Parker, S. Negi, T. Davis, E.W. Keefer, H. Wiggins, P.A. House, B. Greger, The use of a novel carbon nanotube coated microelectrode array for chronic intracortical recording and microstimulation. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p. 791–794 (2012)Google Scholar
  30. M. Polak, A.A. Eshraghi, O. Nehme, S. Ahsan, J. Guzman, R.E. Delgado, et al., Evaluation of hearing and auditory nerve function by combining ABR, DPOAE and eABR tests into a single recording session. J. Neurosci. Methods 134(2), 141–149 (2004)CrossRefGoogle Scholar
  31. S.J. Rebscher, M. Heilmann, W. Bruszewski, N.H. Talbot, R.L. Snyder, M.M. Merzenich, Strategies to improve electrode positioning and safety in cochlear implants. IEEE Trans. Biomed. Eng. 46(3), 340–352 (1999)CrossRefGoogle Scholar
  32. S.J. Rebscher, A. Hetherington, B. Bonham, P. Wardrop, D. Whinney, P.A. Leake, Considerations for the design of future cochlear implant electrode arrays: Electrode array stiffness, size and depth of insertion. J. Rehabil. Res. Dev. 45(5), 731 (2008)CrossRefGoogle Scholar
  33. H.-X. Ren, X. Chen, J.-H. Liu, N. Gu, X.-J. Huang, Toxicity of single-walled carbon nanotube: How we were wrong? Mater. Today 13(1), 6–8 (2010)CrossRefGoogle Scholar
  34. J.J. Roland, T.M. Magardino, J. Go, D. Hillman, Effects of glycerin, hyaluronic acid, and hydroxypropyl methylcellulose on the spiral ganglion of the Guinea pig cochlea. Ann. Otol. Rhinol. Laryngol. Suppl. 166, 64–68 (1995)Google Scholar
  35. H. Skarzynski, A. Lorens, M. Matusiak, M. Porowski, P.H. Skarzynski, C.J. James, Cochlear implantation with the nucleus slim straight electrode in subjects with residual low-frequency hearing. Ear Hear. 35(2), e33–e43 (2014)CrossRefGoogle Scholar
  36. S. Smart, A. Cassady, G. Lu, D. Martin, The biocompatibility of carbon nanotubes. Carbon 44(6), 1034–1047 (2006)CrossRefGoogle Scholar
  37. F.A. Spelman, Cochlear electrode arrays: Past, present and future. Audiol. Neurotol. 11(2), 77–85 (2006)CrossRefGoogle Scholar
  38. V. Srinivasan, J.W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors. J. Electrochem. Soc. 144(8), L210–L213 (1997)CrossRefGoogle Scholar
  39. S. Tang, Y. Tang, L. Zhong, K. Murat, G. Asan, J. Yu, et al., Short-and long-term toxicities of multi-walled carbon nanotubes in vivo and in vitro. J. Appl. Toxicol. 32(11), 900–912 (2012)CrossRefGoogle Scholar
  40. M. Thorne, A.N. Salt, J.E. DeMott, M.M. Henson, O. Henson, S.L. Gewalt, Cochlear fluid space dimensions for six species derived from reconstructions of three-dimensional magnetic resonance images. Laryngoscope 109(10), 1661–1668 (1999)CrossRefGoogle Scholar
  41. F. Vitale, S.R. Summerson, B. Aazhang, C. Kemere, M. Pasquali, Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 9(4), 4465–4474 (2015)CrossRefGoogle Scholar
  42. K. Wang, H.A. Fishman, H. Dai, J.S. Harris, Neural stimulation with a carbon nanotube microelectrode array. Nano Lett. 6(9), 2043–2048 (2006)CrossRefGoogle Scholar
  43. P. Wardrop, D. Whinney, S.J. Rebscher, W. Luxford, P. Leake, A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II: Comparison of Spiral Clarion™ and HiFocus II™ electrodes. Hear. Res. 203(1), 68–79 (2005a)CrossRefGoogle Scholar
  44. P. Wardrop, D. Whinney, S.J. Rebscher, J.T. Roland Jr., W. Luxford, P.A.J.H.R. Leake, A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. I: Comparison of nucleus banded and nucleus contour™ electrodes. Hear. Res. 203(1–2), 54–67 (2005b)CrossRefGoogle Scholar
  45. B.S. Wilson, C.C. Finley, D.T. Lawson, R.D. Wolford, D.K. Eddington, W.M. Rabinowitz, Better speech recognition with cochlear implants. Nature 352(6332), 236–238 (1991)CrossRefGoogle Scholar
  46. W. Yang, P. Thordarson, J.J. Gooding, S.P. Ringer, F. Braet, Carbon nanotubes for biological and biomedical applications. Nanotechnol. 18(41), 412001 (2007)CrossRefGoogle Scholar
  47. F.-G. Zeng, S. Rebscher, W. Harrison, X. Sun, H. Feng, Cochlear implants: System design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115–142 (2008)CrossRefGoogle Scholar
  48. J. Zhang, S. Bhattacharyya, N. Simaan, Model and parameter identification of friction during robotic insertion of cochlear-implant electrode arrays. 2009 IEEE International Conference on Robotics and Automation, p. 3859–3864 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Gwang Jin Choi
    • 1
    • 2
  • Tae Mok Gwon
    • 1
  • Doo Hee Kim
    • 3
  • Junbeom Park
    • 4
  • Seung Min Kim
    • 4
  • Seung Ha Oh
    • 3
  • Yoonseob Lim
    • 5
    Email author
  • Sang Beom Jun
    • 6
    Email author
  • Sung June Kim
    • 1
    • 2
    • 7
  1. 1.Department of Electrical and Computer EngineeringSeoul National UniversitySeoulSouth Korea
  2. 2.Inter-University Semiconductor Research CenterSeoul National UniversitySeoulSouth Korea
  3. 3.Department of Otorhinolaryngology-Head and Neck SurgerySeoul National University Hospital, Seoul National University College of MedicineSeoulSouth Korea
  4. 4.Carbon Composite Materials Research CenterKorea Institute of Science and TechnologyWanju-gunSouth Korea
  5. 5.Robotics and Media InstituteKorea Institute of Science and TechnologySeoulSouth Korea
  6. 6.Department of Electronic and Electrical EngineeringEwha Womans UniversitySeoulSouth Korea
  7. 7.Institute on Aging, College of MedicineSeoul National UniversitySeoulSouth Korea

Personalised recommendations