Advertisement

Biomedical Microdevices

, 21:26 | Cite as

The relationship between the Young’s modulus and dry etching rate of polydimethylsiloxane (PDMS)

  • Matthew L. Fitzgerald
  • Sara Tsai
  • Leon M. Bellan
  • Rebecca Sappington
  • Yaqiong Xu
  • Deyu LiEmail author
Article
  • 121 Downloads

Abstract

Polydimethylsiloxane (PDMS) has been the pivotal materials for microfluidic technologies with tremendous amount of lab-on-a-chip devices made of PDMS microchannels. While molding-based soft-lithography approach has been extremely successful in preparing various PDMS constructs, some complex features have to been achieved through more complicated microfabrication techniques that involve dry etching of PDMS. Several recipes have been reported for reactive ion etching (RIE) of PDMS; however, the etch rates present large variations, even for the same etching recipe, which poses challenges in adopting this process for device fabrication. Through systematic characterization of the Young’s modulus of PDMS films and RIE etch rate, we show that the etch rate is closely related to the polymer cross-link density in the PDMS with a higher etch rate for a lower PDMS Young’s modulus. Our results could provide guidance to the fabrication of microfluidic devices involving dry etching of PDMS.

Keywords

PDMS RIE etching Young’s modulus Microfluidic devices 

Notes

Acknowledgements

M.F. and D.L. acknowledge a helpful discussion with Dr. Godfrey Saudi. The authors acknowledge the financial support from the National Institutes of Health (Grants Number: 1R21EY026176, 1R01 EY027729), and from National Aeronautics and Space Administration (Grant Number: 80NSSC18K1165), which is a fellowship award to Matthew Fitzgerald under the NASA Space Technology Research Fellowships program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. J.R. Anderson, D.T. Chiu, R.J. Jackman, O. Cherniavskaya, J.C. McDonald, H. Wu, S.H. Whitesides, G.M. Whitesides, Anal. Chem. 72, 3158 (2000)CrossRefGoogle Scholar
  2. D. Armani, C. Liu, N. Aluru, IEEE International MEMS '99 Twelfth IEEE International Conference on Micro Electro Mechanical Systems. (1999)Google Scholar
  3. W. Chen, R.H. Lam, J. Fu, Lab Chip 12, 391 (2012)CrossRefGoogle Scholar
  4. S.P. Desai, D.M. Freeman, J. Voldman, Lab Chip 9, 1631 (2009)CrossRefGoogle Scholar
  5. K.H. Dodson, F.D. Echevarria, D. Li, R.M. Sappington, J.F. Edd, Biomed. Microdevices 17, 114 (2015)CrossRefGoogle Scholar
  6. D.T. Eddington, W.C. Crone, D.J. Beebe, 7th international conference on miniaturized chemical and Biochem. Analysis Systems (2003)Google Scholar
  7. A. Folch, M. Toner, Biotechnol. Progress. 14, 388 (1998)CrossRefGoogle Scholar
  8. D. Fragiadakis, P. Pissis, J. Non-Cryst. Solids 353, 4344 (2007)CrossRefGoogle Scholar
  9. J. Garra, T. Long, J. Currie, T. Schneider, R. White, M. Paranjape, J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films. 20, 975 (2002)CrossRefGoogle Scholar
  10. B. Gorissen, C. Van Hoof, D. Reynaerts, M. De Volder, Microsyst. Nanoeng. 2, 16045 (2016)CrossRefGoogle Scholar
  11. S.J. Hwang, D.J. Oh, P.G. Jung, S.M. Lee, J.S. Go, J.H. Kim, K.Y. Hwang, J.S. Ko, J. Micromech. Microeng. 19, 095010 (2009)CrossRefGoogle Scholar
  12. H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek, J. Fluitman, J. Micromech. Microeng. 6, 14 (1996)CrossRefGoogle Scholar
  13. B.H. Jo, L.M. Van Lerberghe, K.M. Motsegood, D.J. Beebe, J. Microelectromech. Syst. 9, 76 (2000)CrossRefGoogle Scholar
  14. I.D. Johnston, D.K. McCluskey, C.K.L. Tan, M.C. Tracey, J. Micromech. Microeng. 24, 035017 (2014)CrossRefGoogle Scholar
  15. J.M. Kim, F. Wolf, S.K. Baier, Tribol. Int. 89, 46 (2015)CrossRefGoogle Scholar
  16. H.K. Lee, S.I. Chang, E. Yoon, J. Microelectromech. Syst. 15, 1681 (2006)CrossRefGoogle Scholar
  17. A. Mata, A.J. Fleischman, S. Roy, Biomed. Microdevices 7, 281 (2005)CrossRefGoogle Scholar
  18. J.C. McDonald, G.M. Whitesides, Acc. Chem. Res. 35, 491 (2002)CrossRefGoogle Scholar
  19. L.D. Nielsen, J. Macromol. Sci. 3, 69 (1969).  https://doi.org/10.1080/15583726908545897 CrossRefGoogle Scholar
  20. S.R. Oh, J. Micromech. Microeng. 18, 115025 (2008)CrossRefGoogle Scholar
  21. D. Szmigiel, K. Domański, P. Prokaryn, P. Grabiec, Microelectron. Eng. 83, 1178 (2006)CrossRefGoogle Scholar
  22. D. Szmigiel, C. Hibert, A. Bertsch, E. Pamuła, K. Domański, P. Grabiec, P. Prokaryn, A. Ścisłowska-Czarnecka, B. Płytycz, Plasma Process. Polym. 5, 246 (2008)CrossRefGoogle Scholar
  23. M.E. Vlachopoulou, A. Tserepi, N. Vourdas, E. Gogolides, K. Misiakos, J. Phys.: Conference Series. 10, 293 (2005)Google Scholar
  24. M.E. Vlachopoulou, G. Kokkoris, C. Cardinaud, E. Gogolides, A. Tserepi, Plasma Process. Polym. 10, 29 (2013)CrossRefGoogle Scholar
  25. E.J. Wong, Doctoral dissertation. Massachusetts Institute of Technology. (2010)Google Scholar
  26. Y. Xia, G.M. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998)CrossRefGoogle Scholar
  27. L. Yang, T. Hong, Y. Zhang, J.G.S. Arriola, B.L. Nelms, R. Mu, D. Li, Biomed. Microdevices 19, 38 (2017)CrossRefGoogle Scholar
  28. R.J. Young, P.A. Lovell, Introduction to Polymers, 2nd edn. (Nelson Thornes, Cheltenham, 2002), p. 310Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.The Vanderbilt Eye Institute and Vanderbilt Brain InstituteVanderbilt University Medical CenterNashvilleUSA
  3. 3.Department of Electrical Engineering and Computer ScienceVanderbilt UniversityNashvilleUSA
  4. 4.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA

Personalised recommendations