Advertisement

Biomedical Microdevices

, 21:17 | Cite as

Biodegradable batteries with immobilized electrolyte for transient MEMS

  • Didi SheEmail author
  • Melissa Tsang
  • Mark Allen
Article

Abstract

Biodegradable batteries play an important role in fully degradable biomedical or environmental systems. The development of biodegradable batteries faces many challenges including power content, device compactness, performance stability, shelf and functional lifetime. In particular, a key driver in the lifetime and overall size of microfabricated biodegradable batteries is the liquid electrolyte volume. Harnessing liquid from the environment to serve as the battery electrolyte may, therefore, be desirable; however, for stable operation, maintaining a constant electrochemical environment inside the cell is required even in the presence of changing body or environmental conditions. We report a biodegradable battery featuring a solid electrolyte of sodium chloride and polycaprolactone. This approach harnesses the body fluid that diffuses into the cell as an element of the electrolyte; however, the large excess of sodium chloride suspended in the polycaprolactone holds intracell ionic conditions constant. A constant discharge profile can then be achieved even in the presence of varying external aqueous conditions, enabling compact, stable-performing cells. This design also features easy integration and automatic activation, providing a simplified strategy to fabricate batteries with long shelf life and desirable functional life span. In addition, the polymeric skeleton of the solid electrolyte system acts as an insulating layer between electrodes, preventing the metallic structure from short-circuit during discharge.

Keywords

Biodegradable batteries PCL NaCl Transient electronics Stable performance Automatic activation 

Notes

Acknowledgements

The work was supported by the National Institute of Health (R21-AR066322) and the National Science Foundation (CMMI-1362652). Microfabrication was carried out at the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under grant 15-42153.

References

  1. M. G. Allen, Microfabricated implantable wireless microsystems: Permanent and biodegradable implementations, Proc. IEEE Int. Conf. Micro Electro Mech. Syst., pp. 1–4 (2014)Google Scholar
  2. S. Baruah, J. Dutta, Nanotechnology applications in pollution sensing and degradation in agriculture. Environ. Chem. Lett. 7(3), 191–204 (2009)CrossRefGoogle Scholar
  3. R. Bashir, BioMEMS: State-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56(11), 1565–1586 (2004)CrossRefGoogle Scholar
  4. C.J. Bettinger, Z. Bao, Biomaterials-based organic electronic devices. Polym. Int. 59(5), 563–567 (2010)Google Scholar
  5. D.J. Chew, L. Zhu, E. Delivopoulos, I.R. Minev, K.M. Musick, C.A. Mosse, M. Craggs, N. Donaldson, S.P. Lacour, S.B. McMahon, J.W. Fawcett, A microchannel Neuroprosthesis for bladder control after spinal cord injury in rat. Sci. Transl. Med. 5(210), 210 (2013)CrossRefGoogle Scholar
  6. E.Y. Chow, A.L. Chlebowski, S. Chakraborty, W.J. Chappell, P.P. Irazoqui, Fully wireless implantable cardiovascular pressure monitor integrated with a medical stent. IEEE Trans. Biomed. Eng. 57(6), 1487–1496 (2010)CrossRefGoogle Scholar
  7. J.P. Dimarco, Implantable Cardioverter–Defibrillators. N. Engl. J. Med. 349(19), 1836–1847 (2003)CrossRefGoogle Scholar
  8. D. Garlotta, A literature review of poly(lactic acid). J. Polym. Environ. 9(2), 63–84 (2001)CrossRefGoogle Scholar
  9. A.C.R. Grayson, R.S. Shawgo, A.M. Johnson, N.T. Flynn, Y. Li, M.J. Cima, R. Langer, A BioMEMS review: MEMS technology for physiologically integrated devices. Proc. IEEE 92(1), 6–21 (2004)CrossRefGoogle Scholar
  10. A. Heller, Potentially implantable miniature batteries. Anal. Bioanal. Chem. 385(3), 469–473 (2006)CrossRefGoogle Scholar
  11. T. Jackson, K. Mansfield, M. Saafi, T. Colman, P. Romine, Measuring soil temperature and moisture using wireless MEMS sensors. Measurement 41(4), 381–390 (2008)CrossRefGoogle Scholar
  12. H. Jimbo, N. Miki, Gastric-fluid-utilizing micro battery for micro medical devices. Sensors Actuators B Chem. 134(1), 219–224 (2008)CrossRefGoogle Scholar
  13. D. H. Kim, J. Viventi, J. J. Amsden, J. Xiao, L. Vigeland, Y.-S. Kim, J. A. Blanco, B. Panilaitis, E. S. Frechette, D. Contreras, D. L. Kaplan, F. G. Omenetto, Y. Huang, K.-C. Hwang, M. R. Zakin, B. Litt, and J. A. Rogers, “Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics,” Nat. Mater. 9(6), 511–517 (2010)CrossRefGoogle Scholar
  14. Y.J. Kim, S.-E. Chun, J. Whitacre, C.J. Bettinger, Self-deployable current sources fabricated from edible materials. J. Mater. Chem. B 1(31), 3781 (2013a)CrossRefGoogle Scholar
  15. Y. J. Kim, W. Wu, S.-E. Chun, J. F. Whitacre, and C. J. Bettinger, Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices., Proc. Natl. Acad. Sci. U. S. A., vol. 110, no. 52, pp. 209 (2013b), 20912CrossRefGoogle Scholar
  16. Y.J. Kim, W. Wu, S.E. Chun, J.F. Whitacre, C.J. Bettinger, Catechol-mediated reversible binding of multivalent cations in eumelanin half-cells. Adv. Mater. 26(38), 6572–6579 (2014)CrossRefGoogle Scholar
  17. D.R. Kipke, R.J. Vetter, J.C. Williams, J.F. Hetke, Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 151–155 (2003)CrossRefGoogle Scholar
  18. B. S. Klosterhoff, M. Tsang, D. She, K. G. Ong, M. G. Allen, N. J. Willett, and R. E. Guldberg, Implantable sensors for regenerative medicine, J. Biomech. Eng., vol. 139, no. 2, p. 21009 (2017), 021009CrossRefGoogle Scholar
  19. R. Langer, Drug delivery and targeting. Nature 392(6679), 5–10 (1998)Google Scholar
  20. M. Luo, A.W. Martinez, C. Song, F. Herrault, M.G. Allen, A microfabricated wireless RF pressure sensor made completely of biodegradable materials. J. Microelectromech. Syst. 23(1), 4–13 (2014)CrossRefGoogle Scholar
  21. A. Magalski, P. Adamson, F. Gadler, M. Böehm, D. Steinhaus, D. Reynolds, K. Vlach, C. Linde, B. Cremers, B. Sparks, T. Bennett, Continuous ambulatory right heart pressure measurements with an implantable hemodynamic monitor: A multicenter, 12-month follow-up study of patients with chronic heart failure. J. Card. Fail. 8(2), 63–70 (2002)CrossRefGoogle Scholar
  22. J. Park, J. Chang, S. Ahn, Y.K. Pak, S. Han, J.J. Pak, Array type dissolved oxygen sensor and measurement system for simultaneous measurement of cellular respiration level, International Solid-State Sensors, Actuators and Microsystems Conference (Transducers 2009), Denver, (2009)Google Scholar
  23. P.D. Patel, (bio)sensors for measurement of analytes implicated in food safety: A review. Trends Anal. Chem. 21(2), 96–115 (2002)CrossRefGoogle Scholar
  24. P.J. Rousche, D.S. Pellinen, D.P. Pivin, J.C. Williams, R.J. Vetter, D.R. Kipke, Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48(3), 361–370 (2001)CrossRefGoogle Scholar
  25. E.M. Schmidt, M.J. Bak, F.T. Hambrecht, C.V. Kufta, D.K. O’Rourke, P. Vallabhanath, Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(5), 507–522 (1996)CrossRefGoogle Scholar
  26. A. Sodergard, M. Stolt, Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27(6), 1123–1163 (2002)CrossRefGoogle Scholar
  27. H. Sun, L. Mei, C. Song, X. Cui, P. Wang, The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 27(9), 1735–1740 (2006)CrossRefGoogle Scholar
  28. H. Suzuki, Microfabrication of chemical sensors and biosensors for environmental monitoring, 12, 1–2, pp. 55–61 (2000)CrossRefGoogle Scholar
  29. M. Tsang, A. Armutlulu, A. W. Martinez, S. A. B. Allen, and M. G. Allen, Biodegradable magnesium/iron batteries with polycaprolactone encapsulation: A microfabricated power source for transient implantable devices, Microsystems Nanoeng., vol. 1, no. August, p. 15024 (2015)Google Scholar
  30. J. Viventi, D.-H. Kim, L. Vigeland, E.S. Frechette, J. a Blanco, Y.-S. Kim, A.E. Avrin, V.R. Tiruvadi, S.-W. Hwang, A.C. Vanleer, D.F. Wulsin, K. Davis, C.E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. a Rogers, B. Litt, Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599–1605 (2011)CrossRefGoogle Scholar
  31. F. Witte, N. Hort, C. Vogt, S. Cohen, K. U. Kainer, R. Willumeit, and F. Feyerabend, Degradable biomaterials based on magnesium corrosion, 12, 5–6 (2008)Google Scholar
  32. D. Xue, Y. Yun, Z. Tan, Z. Dong, M.J. Schulz, In vivo and in vitro degradation behavior of magnesium alloys as biomaterials. J. Mater. Sci. Technol. 28(3), 261–267 (2012)CrossRefGoogle Scholar
  33. L. Yin, X. Huang, H. Xu, Y. Zhang, J. Lam, J. Cheng, J.A. Rogers, Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv. Mater. 26(23), 3879–3884 (2014)CrossRefGoogle Scholar
  34. S. Zhu, N. Huang, L. Xu, Y. Zhang, H. Liu, H. Sun, Y. Leng, Biocompatibility of pure iron: In vitro assessment of degradation kinetics and cytotoxicity on endothelial cells. Mater. Sci. Eng. C 29(5), 1589–1592 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.School of Biomedical EngineeringGeorgia Institute of TechnologyGeorgiaUSA

Personalised recommendations