Advertisement

Biomedical Microdevices

, 21:28 | Cite as

Microfluidic chip to interface porous microneedles for ISF collection

  • Kai Takeuchi
  • Nobuyuki Takama
  • Beomjoon KimEmail author
  • Kirti Sharma
  • Oliver Paul
  • Patrick Ruther
Article
  • 164 Downloads
Part of the following topical collections:
  1. Biomedical MicroNeedles

Abstract

Porous microneedles (MNs) are expected to be applied for diagnostic microfluidic devices such as blood glucose monitoring as they enable a pain-free penetration of human skin and the extraction of interstitial fluids. However, conventional microfluidic systems require additional steps to separate the liquid from a porous structure used for fluid extraction. In this study, we developed a microfluidic system with a hydrodynamically designed interface between a porous MN array and microchannels to enable a direct analysis of liquids extracted by the porous MN array. The microfluidic chip with an interface for the MN array was successfully realized by standard MEMS processes, enabling a liquid flow through the whole microfluidic structure. The porous MN array was fabricated by the salt leaching and molding method, which was integrated with the chip and demonstrated the successful extraction of liquids from an agarose gel-based skin phantom.

Keywords

Porous Microneedle Microfluidics Fluid extraction 

Notes

Acknowledgements

This work was supported by the Cluster of Excellence BrainLinks-BrainTools through the German Research Foundation (DFG) under Grant EXC 1086 and the DFG project Phytochromes under Grant RU 869/5-1.

References

  1. M. Brown, S. Jones, J. Eur. Acad. Dermatol. Venereol. 19, 308 (2005)CrossRefGoogle Scholar
  2. E.M. Cahill, S. Keaveny, P. Ramos-Luna, E.D.C. O’Cearbhaill, 5th Int. Conf. Microneedles, pp. 89 (2018)Google Scholar
  3. K.J. Cha, DS. Kim, Biomed. Microdevices. 13, 877 (2011)CrossRefGoogle Scholar
  4. A.A. Chavan, H. Li, A. Scarpellini, S. Marras, L. Manna, A. Athanassiou, D. Fragouli, . ACS Appl. Mater. Interfaces. 7, 14778 (2015)CrossRefGoogle Scholar
  5. S.J. Choi, T.H. Kwon, H. Im, D.I. Moon, D.J. Baek, M.L. Seol, J.P. Duarte, Y.K. Choi, ACS Appl. Mater. Interfaces. 3, 4552 (2011)CrossRefGoogle Scholar
  6. B. Chua, S.P. Desai, M.J. Tierney, J.A. Tamada, A.N. Jina, Sensors Actuators A Phys. 203, 373 (2013)CrossRefGoogle Scholar
  7. M. Dijkstra, M.J. de Boer, J.W. Berenschot, T.S.J. Lammerink, R.J. Wiegerink, M. Elwenspoek, J. Micromech. Microeng. 17, 1971 (2007)CrossRefGoogle Scholar
  8. I.K. Dimov, L. Basabe-Desmonts, J.L. Garcia-Cordero, B.M. Ross, A.J. Ricco, L.P. Lee, Lab Chip. 11, 845 (2011)CrossRefGoogle Scholar
  9. Z. Fekete, A. Pongrácz, P. Fürjes, G. Battistig, Microsys. Technol. 18, 353 (2012)CrossRefGoogle Scholar
  10. S.K. Garg, R.O. Potts, N.R. Ackerman, S.J. Fermi, J.A. Tamada, H.P. Chase, Diabetes Care. 22, 1708 (1999)CrossRefGoogle Scholar
  11. P. Griss, G. Stemme, In technical digest. 15th IEEE Int. Conf. Micro Electro Mechan. Sys., pp. 467 (2002)Google Scholar
  12. P. Griss, G. Stemme, J. Microelectromec. Sys. 12, 296 (2003)CrossRefGoogle Scholar
  13. S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, J. Pharm. Sci. 87, 922 (1998)CrossRefGoogle Scholar
  14. S. Hirobe, H. Azukizawa, K. Matsuo, Y. Zhai, Y.S. Quan, F. Kamiyama, H. Suzuki, I. Katayama, N. Okada, S. Nakagawa, Pharm. Res. 30, 2664 (2013)CrossRefGoogle Scholar
  15. Q. Hou, D.W. Grijpma, J. Feijen, Biomater. 24, 1937 (2003)CrossRefGoogle Scholar
  16. C. Ishino, M. Reyssat, E. Reyssat, K. Okumura, D. Quéré, EPL (Europhys. Lett.) 79, 56005 (2007)CrossRefGoogle Scholar
  17. M. Khorasani, H. Mirzadeh, Z. Kermani, Appl. Surf. Sci. 242, 339 (2005)CrossRefGoogle Scholar
  18. J.D. Kim, M. Kim, H. Yang, K. Lee, H. Jung, J. Control. Release. 170, 430 (2013)CrossRefGoogle Scholar
  19. K. Kim, D.S. Park, H.M. Lu, W. Che, K. Kim, J.B. Lee, C.H. Ahn, J. Micromech. Microeng. 14, 597 (2004)CrossRefGoogle Scholar
  20. S. Kurokawa, N. Takama, B. Kim, In 2017 JSPE Autumn Conf., pp. 943 (2017)Google Scholar
  21. C.G. Li, C.Y. Lee, K. Lee, H. Jung, Biomed. Microdevices. 15, 17 (2013)CrossRefGoogle Scholar
  22. C.G. Li, H.A. Joung, H. Noh, M.B. Song, M.G. Kim, H. Jung, Lab Chip. 15, 3286 (2015)CrossRefGoogle Scholar
  23. L. Lin, A.P. Pisano, J. Microelectromec. Sys. 8, 78 (1999)CrossRefGoogle Scholar
  24. L. Liu, H. Kai, K. Nagamine, Y. Ogawa, M. Nishizawa, RSC Adv. 6, 48630 (2016)CrossRefGoogle Scholar
  25. D. Loewenstein, C. Stake, M. Cichon, Am. J. Emerg. Med. 31, 1236 (2013)CrossRefGoogle Scholar
  26. M.H. Madsen, N.A. Feidenhans’l, P.E. Hansen, J. Garnæs, K. Dirscherl, J. Micromech. Microeng. 24, 127002 (2014)CrossRefGoogle Scholar
  27. P.R. Miller, X. Xiao, I. Brener, D.B. Burckel, R. Narayan, R. Polsky, Adv. Healthcare Mater. 3, 876 (2013)CrossRefGoogle Scholar
  28. E. Mukerjee, S. Collins, R. Isseroff, Smith R., Sensors Actuators A Phys. 114, 267 (2004)CrossRefGoogle Scholar
  29. K. Nagamine, J. Kubota, H. Kai, Y. Ono, M. Nishizawa, Biomed. Microdevices. 19, 68 (2017)CrossRefGoogle Scholar
  30. J.D. Newman, A.P.F. Turner, Biosens. Bioelectron. 20, 2435 (2005)CrossRefGoogle Scholar
  31. D. Nicholas, K.A. Logan, Y. Sheng, J. Gao, S. Farrell, D. Dixon, B. Callan, A.P. McHale, J.F. Callan, Int. J. Pharm. 547, 244 (2018)CrossRefGoogle Scholar
  32. A. Palasz, J. Thundathil, R. Verrall, R. Mapletoft, Anim. Reprod. Sci. 58, 229 (2000)CrossRefGoogle Scholar
  33. P. Parikh, H. Mochari, L. Mosca, Am. J. Health Promot. 23, 279 (2009)CrossRefGoogle Scholar
  34. I. Park, Z. Li, X. Li, A.P. Pisano, R.S. Williams, Biosens. Bioelectron. 22, 2065 (2007)CrossRefGoogle Scholar
  35. J.-H. Park, M.G. Allen, M.R. Prausnitz, J. Control. Release. 51, 104 (2005)Google Scholar
  36. K. Pitts, S. Abu-Mallouh, M. Fenech, J. Mech. Behav. Biomed. Mater. 17, 333 (2013)CrossRefGoogle Scholar
  37. G. Pocock, C.D. Richards, D.A. Richards. (Oxford University Press, Oxford, 2013)Google Scholar
  38. A. Pongrácz, Z. Fekete, G. Márton, Z. s. Bérces, I. Ulbert, P. Fürjes, Sens. Actuators B. 189, 97 (2013)CrossRefGoogle Scholar
  39. M.R. Prausnitz, Adv. Drug Deliv. Rev. 56, 581 (2004)CrossRefGoogle Scholar
  40. L. Strambini, A. Longo, S. Scarano, T. Prescimone, I. Palchetti, M. Minunni, D. Giannessi, G. Barillaro, Biosens. Bioelectron. 66, 162 (2015)CrossRefGoogle Scholar
  41. H. Suzuki, T. Tokuda, K. Kobayashi, Sens. Actuators B: Chem. 83, 53 (2002)CrossRefGoogle Scholar
  42. H.L. Thanh, B.Q. Ta, H.L. The, V. Nguyen, K. Wang, F. Karlsen, J. Microelectromec. Sys. 24, 1583 (2015)CrossRefGoogle Scholar
  43. P. Thurgood, S. Baratchi, C. Szydzik, A. Mitchell, K. Khoshmanesh, Lab Chip. 17, 2517 (2017)CrossRefGoogle Scholar
  44. A. Trautmann, P. Ruther, O. Paul, pp. 682 In 16th IEEE Annu Int. Conf. Micro Electro Mechan. Sys. (2003)Google Scholar
  45. A. Trautmann, F. Heuck, R. Denfeld, P. Ruther, O. Paul, In 19th IEEE Int. Conf. Micro Electro Mechan. Sys., pp. 434 (2006)Google Scholar
  46. P.M. Wang, M. Cornwell, M.R. Prausnitz, Diabetes Technol. Ther. 7, 131 (2005)CrossRefGoogle Scholar
  47. J. Wu, J. Suls, W. Sansen, Sens. Actuators B: Chem. 78, 221 (2001)CrossRefGoogle Scholar
  48. L. Wu, A. Coleman, B. Kim, In 5th Int. Conf. Microneedles, pp. 64 (2018)Google Scholar
  49. M.-Z. Yang, C.-L. Dai, C.-B. Hung, Microelectron. Eng. 97, 353 (2012)CrossRefGoogle Scholar
  50. W. Yao, Y. Li, G. Ding, Evid. Based Complement. Alternat. Med. 2012, 9 (2012)Google Scholar
  51. X. Zhao, L. Li, B. Li, J. Zhang, A. Wang, J. Mater. Chem. A. 2, 18281 (2014)CrossRefGoogle Scholar
  52. Y. Zhao, S. Li, A. Davidson, B. Yang, Q. Wang, Q. Lin, J. Micromech. Microeng. 17, 2528 (2007)CrossRefGoogle Scholar
  53. M. Zimmermann, P. Hunziker, E. Delamarche, Microfluid. Nanofluid. 5, 395 (2008)CrossRefGoogle Scholar
  54. S. Zimmermann, D. Fienbork, B. Stoeber, A.W. Flounders, D. Liepmann, In: TRANSDUCERS 12th Int. Conf. Solid-State Sensors, Actuators and Microsystems, pp. 99 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Industrial ScienceThe University of TokyoTokyoJapan
  2. 2.Department of Microsystems Engineering (IMTEK), and Cluster of Excellence BrainLinks-BrainToolsUniversity of FreiburgFreiburgGermany

Personalised recommendations