Advertisement

Biomedical Microdevices

, 21:16 | Cite as

Stable biphasic interfaces for open microfluidic platforms

  • Ulri N. Lee
  • Jean Berthier
  • Jiaquan Yu
  • Erwin Berthier
  • Ashleigh B. ThebergeEmail author
Article

Abstract

We present an open microfluidic platform that enables stable flow of an organic solvent over an aqueous solution. The device features apertures connecting a lower aqueous channel to an upper solvent compartment that is open to air, enabling easy removal of the solvent for analysis. We have previously shown that related open biphasic systems enable steroid hormone extraction from human cells in microscale culture and secondary metabolite extraction from microbial culture; here we build on our prior work by determining conditions under which the system can be used with extraction solvents of ranging polarities, a critical feature for applying this extraction platform to diverse classes of metabolites. We developed an analytical model that predicts the limits of stable aqueous-organic interfaces based on analysis of Laplace pressure. With this analytical model and experimental testing, we developed generalized design rules for creating stable open microfluidic biphasic systems with solvents of varying densities, aqueous-organic interfacial tensions, and polarities. The stable biphasic interfaces afforded by this device will enable on-chip extraction of diverse metabolite structures and novel applications in microscale biphasic chemical reactions.

Keywords

Microfluidics Liquid-liquid extraction Biphasic interfaces Metabolomics 

Notes

Acknowledgements

This work was funded by the University of Washington, NIH K12DK100022, and NIH R01CA185251 (JY). We gratefully acknowledge Dr. David Beebe for helpful discussions and the Microtechnology Medicine and Biology (MMB) laboratory for supporting preliminary experiments that laid the foundation for this work. We thank Alexander Howard and Drs. Mark Scalf and Lloyd Smith for their contributions to preliminary experiments.

Compliance with ethical standards

Conflicts of interest

The authors acknowledge the following potential conflicts of interest in companies pursuing open microfluidic technologies: JY: Stacks to the Future, LLC, EB: Tasso, Inc., Salus Discovery, LLC, and Stacks to the Future, LLC, ABT: Stacks to the Future, LLC.

Supplementary material

10544_2019_367_MOESM1_ESM.docx (14.6 mb)
ESM 1 (DOCX 14993 kb)
10544_2019_367_MOESM2_ESM.mpg (24.1 mb)
ESM 2 (MPG 24712 kb)
10544_2019_367_MOESM3_ESM.mpg (36.7 mb)
ESM 3 (MPG 37540 kb)
10544_2019_367_MOESM4_ESM.mpg (18.7 mb)
ESM 4 (MPG 19174 kb)
10544_2019_367_MOESM5_ESM.mpg (87.5 mb)
ESM 5 (MPG 89616 kb)

References

  1. D.D. Agonafer, K. Lopez, J.W. Palko, Y. Won, J.G. Santiago, K.E. Goodson, J. Colloid Interface Sci. 455, 1–5 (2015)CrossRefGoogle Scholar
  2. B. Ahmed, D. Barrow, T. Wirth, Adv. Synth. Catal. 348, 1043–1048 (2006)CrossRefGoogle Scholar
  3. W. Apostoluk, J. Drzymała, J. Colloid Interface Sci. 262, 483–488 (2003)CrossRefGoogle Scholar
  4. L.J. Barkal, A.B. Theberge, C.-J. Guo, J. Spraker, L. Rappert, J. Berthier, K.A. Brakke, C.C.C. Wang, D.J. Beebe, N.P. Keller, E. Berthier, Nat. Commun. 7, 10610 (2016)CrossRefGoogle Scholar
  5. E. Berthier, D.J. Beebe, Lab Chip 7, 1475–1478 (2007)CrossRefGoogle Scholar
  6. J. Berthier, K.A. Braake, The Physics of Microdroplets, Wiley-scrivener, 1 ed. Beverly 2012, 105–142Google Scholar
  7. J. Berthier, F. Loe-Mi, V.-M. Tran, S. Schoumacker, F. Mittler, G. Marchand, N. Sarrut, J. Colloid Interface Sci. 338, 296–303 (2009)CrossRefGoogle Scholar
  8. E. Berthier, J. Warrick, B.P. Casavant, D.J. Beebe, Lab Chip 11, 2060–2065 (2011)CrossRefGoogle Scholar
  9. J. Berthier, K.A. Brakke, E. Berthier, Open Microfluidics (Wiley-Scrivener, Beverly, 2016), p. 17CrossRefGoogle Scholar
  10. J.R. Burns, C. Ramshaw, Lab Chip 1, 10–15 (2001)CrossRefGoogle Scholar
  11. G. Carlucci, J. Chromatogr. A 812, 343–367 (1998)CrossRefGoogle Scholar
  12. B.P. Casavant, E. Berthier, A.B. Theberge, J. Berthier, S.I. Montanez-Sauri, L.L. Bischel, K. Brakke, C.J. Hedman, W. Bushman, N.P. Keller, D.J. Beebe, Proc. Natl. Acad. Sci. U. S. A. 110, 10111–10116 (2013)CrossRefGoogle Scholar
  13. P.-G. de Gennes, F. Brochart-Wyart, D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York City, 2004), pp. 69–85zbMATHGoogle Scholar
  14. R. Draisci, C. Marchiafava, L. Palleschi, P. Cammarata, S. Cavalli, J. Chromatogr. B: Biomed. Sci. Appl. 753, 217–223 (2001)CrossRefGoogle Scholar
  15. A.A. Freitas, F.H. Quina, F.A.J. Carroll, Phys. Chem. B 101, 7488–7493 (1997)CrossRefGoogle Scholar
  16. H. Hisamoto, T. Horiuchi, K. Uchiyama, M. Tokeshi, A. Hibara, T. Kitamori, Anal. Chem. 73, 5551–5556 (2001)CrossRefGoogle Scholar
  17. C. Hsu, C. Chen, A. Folch, Lab Chip 4, 420–424 (2004)CrossRefGoogle Scholar
  18. G. Kaigala, R. Lovchik, E. Delamarche, Angew. Chem. Int. Ed. 51, 11224–11240 (2012)CrossRefGoogle Scholar
  19. D.K. Lloyd, J. Chromatogr. A. 735, 29–42 (1996)CrossRefGoogle Scholar
  20. P. Mary, V. Studer, P. Tabeling, Anal. Chem. 80, 2680–2687 (2008)CrossRefGoogle Scholar
  21. A.A. Maryott, E.R. Smith, Table of dielectric constants of pure liquids (National Bureau of Standards, Washington D.C., 1951), p. 1CrossRefGoogle Scholar
  22. I. Meyvantsson, J. Warrick, S. Hayes, A. Skoien, D.J. Beebe, Lab Chip 8, 717–724 (2008)CrossRefGoogle Scholar
  23. G.H. Morrison, Anal. Chem. 22, 1388–1393 (1950)CrossRefGoogle Scholar
  24. T. Ondarçuhu, J. Phys. II 5, 227–241 (1995)Google Scholar
  25. S. Pedersen-Bjergaard, K.E. Rasmussen, Anal. Chem. 71, 2650–2656 (1999)CrossRefGoogle Scholar
  26. S.X. Peng, T.M. Branch, S.L. King, Anal. Chem. 73, 708–714 (2001)CrossRefGoogle Scholar
  27. M. Rhee, M. Burns, Langmuir 24, 590–601 (2008)CrossRefGoogle Scholar
  28. J. Rydberg, M. Cox, C. Musikas, G. Choppin (eds.), Solvent Extraction Principles and Practice, Revised and Expanded (CRC Press, New York, 2004)Google Scholar
  29. J. Sun, X. Xu, C. Wang, T. You, Electrophoresis 29, 3999–4007 (2008)CrossRefGoogle Scholar
  30. D.W. Tedder, in In Albright’s Chemical Engineering Handbook. Liquid-Liquid Extraction (CRC Press, New York, 2008), pp. 709–−735CrossRefGoogle Scholar
  31. A.B. Theberge, G. Whyte, M. Frenzel, L. Fidalgo, R. Wootton, W. Huck, Chem. Commun. (41), 6225–6227 (2009)Google Scholar
  32. P. Thurgood, S. Baratchi, C. Szydzik, A. Mitchella, K. Khoshmanesh, Lab Chip 17, 2517–2527 (2017)CrossRefGoogle Scholar
  33. Y. Uozumi, Y. Yamada, T. Beppu, N. Fukuyama, M. Ueno, T. Kitamori, J. Am. Chem. Soc. 128, 15994–15995 (2006)CrossRefGoogle Scholar
  34. G. Walker, D.J. Beebe, Lab Chip 2, 131–134 (2002)CrossRefGoogle Scholar
  35. M.J.M. Wells, S. Mitra, Sample Preparation Techniques in Analytical Chemistry. Hoboken, 37–74 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ulri N. Lee
    • 1
  • Jean Berthier
    • 1
  • Jiaquan Yu
    • 2
    • 3
  • Erwin Berthier
    • 1
  • Ashleigh B. Theberge
    • 1
    • 4
    Email author
  1. 1.Department of ChemistryUniversity of WashingtonSeattleUSA
  2. 2.Department of Biomedical EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Carbone Cancer CenterUniversity of Wisconsin-MadisonMadisonUSA
  4. 4.Department of UrologyUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations