Advertisement

Biomedical Microdevices

, 21:13 | Cite as

WEDM-LS processing sophisticated and durable Zr-based metallic glass mold insert for micro structure injection of polymers

  • Zhiyuan Huang
  • Xiong Liang
  • Chuntao Chang
  • Jiang MaEmail author
Article

Abstract

Micro components processed by injection molding still have a defect of bad precision and short life. A Zr- based metallic glass was reported for injection mold insert which can solve the problem well. The microstructure of metallic glass mold insert can be fabricated by wire electrical discharge machining-low speed (WEDM-LS), WEDM-LS has higher machining accuracy than WEDM-high speed, and X-ray diffraction curves show that the processed sample still retained better amorphous characteristic, afterward, time-temperature-transformation diagram shows metallic glass has a long service life in production. Finally, under the observe of scanning electron microscope, it is found that the products after injection molding not only completely replicates the structure on metallic glass but also have a better surface morphology. These experiments show that processing a sophisticated and durable Zr-based metallic glass mold by WEDM-LS is good for getting micro structure injection of polymers. It also provides a good mold material and machining method for injection industry.

Keywords

Metallic glass Microstructure Wire electrical discharge machining-low speed X-ray diffraction Time-temperature-transformation 

Notes

Acknowledgements

The work was supported by the NSF of China (Nos. 51871157, 51605304), the Ph.D. Start-up Fund of Natural Science Foundation of Guangdong Province (Nos. 2016A030310036, 2016A030310043), the Science and Technology Innovation Commission Shenzhen (Nos. JCYJ20170412111216258, JCYJ20160520164903055 and JCYJ20160422162907121), and the Natural Science Foundation of Shenzhen University (No. 2017034).

References

  1. A.S. Argon, Plastic deformation in metallic glasses. Acta Metall. 27, 47–58 (1979)CrossRefGoogle Scholar
  2. M.F. Ashby, A.L. Greer, Metallic glasses as structural materials. Scr. Mater. 54, 321–326 (2006)CrossRefGoogle Scholar
  3. M. Avella, M.E. Errico, R. Rimedio, PVA/PTFE nanocomposites: Thermal, mechanical, and barrier properties. J. Mater. Sci. 39, 6133–6136 (2004)CrossRefGoogle Scholar
  4. M. Chen, Mechanical behavior of metallic glasses: Microscopic understanding of strength and ductility. Annu. Rev. Mater. Res. 38, 445–469 (2008)CrossRefGoogle Scholar
  5. M. Chiarbonello, D. Firrao, R. Gerosa, A. Ghidini, M.G. Ienco, P. Matteis, et al., Mechanical properties of large plastic-Mold steel blooms. Fracture of Nano & Engineering Materials & Structures, 433–434 (2006)Google Scholar
  6. G. Duan, A. Wiest, M.L. Lind, J. Li, W.K. Rhim, W.L. Johnson, Bulk metallic glass with benchmark thermoplastic Processability. Adv. Mater. 19, 4272–4275 (2010)CrossRefGoogle Scholar
  7. J. Eckert, J. Das, S. Pauly, C. Duhamel, Mechanical properties of bulk metallic glasses and composites. Mrs Bull. 32, 635–638 (2007)CrossRefGoogle Scholar
  8. R.K. Garg, K.K. Singh, A. Sachdeva, V.S. Sharma, K. Ojha, S. Singh, Review of research work in sinking EDM and WEDM on metal matrix composite materials. Int. J. Adv. Manuf. Technol. 50, 611–624 (2010)CrossRefGoogle Scholar
  9. E. Georgatis, A. Lekatou, H. Petropoulos, S. Katsamakis, A. Poulia, Development of a cast Al-MgSi-Si In Situ composite: Microstructure, heat treatment, and mechanical properties. J. Mater. Eng. Perform. 22, 729–741 (2013)CrossRefGoogle Scholar
  10. Y. Gong, Y. Sun, X. Wen, C. Wang, Q. Gao, Experimental study on surface integrity of Ti-6Al-4V machined by LS-WEDM. Int. J. Adv. Manuf. Technol. 88, 1–11 (2016)CrossRefGoogle Scholar
  11. X. Gu, W. Hao, J. Wang, H. Kou, J. Li, Microstructure changes in Zr-based metallic glass induced by ion milling. Rare Metal Mater. Eng. 39, 1693–1696 (2010)CrossRefGoogle Scholar
  12. S.F. Guo, Z.Y. Wu, L. Liu, Preparation and magnetic properties of FeCoHfMoBY bulk metallic glasses. J. Alloys Compd. 468, 54–57 (2009)CrossRefGoogle Scholar
  13. M. Heckele, W.K. Schomburg, Review on micro molding of thermoplastic polymers. J. Micromech. Microeng. 14, R1 (2004)CrossRefGoogle Scholar
  14. H. Hu, J. Yan, On the surface characteristics of a Zr-based bulk metallic glass processed by microelectrical discharge machining. Appl. Surf. Sci. 355, 1306–1315 (2015)CrossRefGoogle Scholar
  15. H. Hu, J. Yan, Microstructural changes of Zr-based metallic glass during micro-electrical discharge machining and grinding by a sintered diamond tool. J. Alloys Compd. 688, 14–21 (2016)CrossRefGoogle Scholar
  16. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys ☆. Acta Mater. 48, 279–306 (2000)CrossRefGoogle Scholar
  17. W.L. Johnson, G. Kaltenboeck, M.D. Demetriou, J.P. Schramm, X. Liu, K. Samwer, et al., Beating crystallization in glass-forming metals by millisecond heating and processing. Science 332, 828–833 (2011)CrossRefGoogle Scholar
  18. M. Kunieda, C. Furudate, High precision finish cutting by dry WEDM. Ann. CIRP 50, 121–124 (2001)CrossRefGoogle Scholar
  19. J.J. Lewandowski, A.L. Greer, Temperature rise at shear bands in metallic glasses. Nat. Mater. 5, 15–18 (2006)CrossRefGoogle Scholar
  20. G. Liu, P. Gao, Z. Xue, Z. Tong, M. Zhang, Ultra-high strength mg–Li based bulk metallic glasses: Preparation and performance research. Mater. Sci. Eng. A 528, 7156–7160 (2011)CrossRefGoogle Scholar
  21. J. Ma, X. Zhang, W.H. Wang, Metallic glass mold insert for hot embossing of polymers. J. Appl. Phys. 112(32), 024506 (2012)CrossRefGoogle Scholar
  22. S.S. Mahapatra, A. Patnaik, Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int. J. Adv. Manuf. Technol. 34, 911–925 (2007)CrossRefGoogle Scholar
  23. L. Mingqi, L. Minghui, X. Guangyao, Study on the variations of form and position of the wire electrode in WEDM-HS. Int. J. Adv. Manuf. Technol. 25, 929–934 (2005)CrossRefGoogle Scholar
  24. P.D. Mitcheson, P. Miao, B.H. Stark, E.M. Yeatman, A.S. Holmes, T.C. Green, MEMS electrostatic micropower generator for low frequency operation. Sensors Actuators A Phy. 115, 523–529 (2004)CrossRefGoogle Scholar
  25. Y. Saotome, K. Itoh, T. Zhang, A. Inoue, Superplastic nanoforming of Pd-based amorphous alloy. Scr. Mater. 44, 1541–1545 (2001)CrossRefGoogle Scholar
  26. J. Schroers, The superplastic forming of bulk metallic glasses. JOM 57, 35–39 (2005)CrossRefGoogle Scholar
  27. W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487–656 (2012)CrossRefGoogle Scholar
  28. D. Wang, G. Liao, J. Pan, Z. Tang, P. Peng, L. Liu, et al., Superplastic micro-forming of Zr 65 cu 17.5 Ni 10 Al 7.5 bulk metallic glass with silicon mold using hot embossing technology. J. Alloys Compd. 484, 118–122 (2009)CrossRefGoogle Scholar
  29. A. Wiest, J.S. Harmon, M.D. Demetriou, R.D. Conner, W.L. Johnson, Injection molding metallic glass. Scr. Mater. 60, 160–163 (2009)CrossRefGoogle Scholar
  30. Y.M. Yeh, G.C. Tu, T.H. Fang, Nanomechanical properties of nanocrystalline Ni–Fe mold insert. J. Alloys Compd. 372, 0–230 (2004)CrossRefGoogle Scholar
  31. S.H. Yeo, P.C. Tan, E. Aligiri, S.B. Tor, N.H. Loh, Processing of zirconium-based bulk metallic glass (BMG) using micro electrical discharge machining (micro-EDM). Mater. Manuf. Processes. 24, 1242–1248 (2009)CrossRefGoogle Scholar
  32. L. Yi, X. Wang, Y. Fan, Microfluidic chip made of COP (cyclo-olefin polymer) and comparion to PMMA (polymethylmethacrylate) microfluidic chip. J. Mater. Process. Technol. 208, 63–69 (2008)CrossRefGoogle Scholar
  33. N. Zhang, J.S. Chu, C.J. Byrne, D.J. Browne, M.D. Gilchrist, Replication of micro/nano-scale features by micro injection molding with a bulk metallic glass mold insert. J. Micromech. Microeng. 22, 065019 (2012a)CrossRefGoogle Scholar
  34. X. Zhang, J. Ma, R. Bai, Q. Li, B.L. Sun, C.Y. Shen, Polymer micro hot embossing with bulk metallic glass Mold insert. Adv. Mater. Res. 510, 639–644 (2012b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zhiyuan Huang
    • 1
    • 2
  • Xiong Liang
    • 1
  • Chuntao Chang
    • 2
    • 3
  • Jiang Ma
    • 1
    Email author
  1. 1.College of Mechatronics and Control EngineeringShenzhen UniversityShenzhenChina
  2. 2.School of Mechanical EngineeringDongguan University of TechnologyDongguanChina
  3. 3.Nuetron Scattering Techonical Engineering Research CenterDongguan University of TechonologyDongguanChina

Personalised recommendations