An electromagnetic anglerfish-shaped millirobot with wireless power generation
- 1 Downloads
Abstract
Female anglerfishes have a lantern-shape luminous organ sprouting from the middle of their heads to lure their prey in the dark deep sea. Inspired by the anglerfish, we designed an electromagnetic anglerfish-shaped millirobot that can receive energy and transform it into light to attract algae cells to specific locations. The small wireless powered robot can receive about 658 mW of power from external energy supply coils, and light LEDs (light-emitting diodes). The wireless power generation and moving control of the robot are analyzed systematically. Transmitting electric energy to smaller scale receivers to endow milli or micro robots with wireless power function is an interesting and promising research direction. With this function, the wireless powered robot is expected to be extensively used at the small scale in the near future, such as to provide electricity to drive microdevices (microgrippers, microsensors, etc.), provide light or heat in small-scale space, stimulate/kill pathological cells in minimally invasive treatment and so on.
Keywords
Electromagnetic millirobot Bio-inspired Anglerfish Wireless power transfer Pandorina morumNotes
Acknowledgements
This paper is supported by National Natural Science Foundation of China (Grant No. 61573339) and the CAS/SAFEA International Partnership Program for Creative Research Teams.
Supplementary material
(WMV 12307 kb)
(WMV 9313 kb)
References
- A. Búzás, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, P. Ormos, Light sailboats: Laser driven autonomous microrobots. Appl. Phys. Lett. 101, 737 (2012)CrossRefGoogle Scholar
- B.L. Cannon, J.F. Hoburg, D.D. Stancil, S.C. Goldstein, Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE. T. Power. Electr 24, 1819–1825 (2009)CrossRefGoogle Scholar
- G. Chatzipirpiridis, O. Ergeneman, J. Pokki, F. Ullrich, S. Fusco, J.A. Ortega, K.M. Sivaraman, B.J. Nelson, S. Pané, Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications. Adv. Healthc. Mater 4, 209–214 (2015)CrossRefGoogle Scholar
- X.Z. Chen, M. Hoop, N. Shamsudhin, T. Huang, B. Özkale, Q. Li, E. Siringil, F. Mushtaq, L. Di Tizio, B.J. Nelson, Hybrid magnetoelectric nanowires for nanorobotic applications: Fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv. Mater. 29 (2017)Google Scholar
- S.E. Chung, X. Dong, M. Sitti, Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper. Lab Chip 15(7), 1667–1676 (2015)CrossRefGoogle Scholar
- B. Dai, J. Wang, Z. Xiong, X. Zhan, W. Dai, C.C. Li, S.P. Feng, J. Tang, Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11, 1087 (2016)CrossRefGoogle Scholar
- O.P. Ernst, P.A.S. Murcia, P. Daldrop, S.P. Tsunoda, S. Kateriya, P. Hegemann, Photoactivation of channelrhodopsin. J. Biol. Chem. 283, 1637–1643 (2008)CrossRefGoogle Scholar
- Finkenzeller, K., 2010. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and near-Field Communication. John Wiley & SonsGoogle Scholar
- K. Foster, R. Smyth, Light antennas in phototactic algae. Microbiol. Rev. 1980(44), 572–630 (1980)Google Scholar
- H.W. Huang, M.S. Sakar, A.J. Petruska, S. Pané, B.J. Nelson, Soft micromachines with programmable motility and morphology. Nat. Commun. 7, 12263 (2016)CrossRefGoogle Scholar
- S. Jeon, G. Jang, H. Choi, S. Park, J. Park, Magnetic navigation system for the precise helical and translational motions of a microrobot in human blood vessels. J. Appl. Phys. 111, 55 (2012)CrossRefGoogle Scholar
- Jiles, D., 2015. Introduction to magnetism and magnetic materials. CRC press, Boca Raton, FL, USAGoogle Scholar
- B. Kherzi, M. Pumera, Self-propelled autonomous nanomotors meet microfluidics. Nanoscale 8, 17415 (2006)CrossRefGoogle Scholar
- S. Martel, C.C. Tremblay, S. Ngakeng, G. Langlois, Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl. Phys. Lett. 89, 257–681 (2006)CrossRefGoogle Scholar
- S. Martel, O. Felfoul, J.B. Mathieu, A. Chanu, S. Tamaz, M. Mohammadi, M. Mankiewicz, N. Tabatabaei, MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int. J. Robot. Res. 28, 1169 (2009)CrossRefGoogle Scholar
- R. Mhanna, F. Qiu, L. Zhang, Y. Ding, K. Sugihara, M. Zenobi-Wong, B.J. Nelson, Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small 10, 1953–1957 (2014)CrossRefGoogle Scholar
- W.T. O'Day, H.R. Fernandez, Aristostomias scintillans (Malacosteidae): A deep-sea fish with visual pigments apparently adapted to its own bioluminescence. Vis. Res. 14, 545–550 (1974)CrossRefGoogle Scholar
- N. Okita, N. Isogai, M. Hirono, R. Kamiya, K. Yoshimura, Phototactic activity in Chlamydomonas 'non-phototactic' mutants deficient in Ca2+−dependent control of flagellar dominance or in inner-arm dynein. J. Cell Sci. 118, 529–530 (2005)CrossRefGoogle Scholar
- S. Palagi, A.G. Mark, S.Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez-Castillo, N. Kapernaum, Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647 (2016)CrossRefGoogle Scholar
- Pietsch, T. W., Kenaley, C. P., 2007. Ceratioidei. Seadevils, Devilfishes, Deep-sea Anglerfishes. Version 02 October 2007 (under construction). in The Tree of Life Web Project, http://tolweb.org/Ceratioidei/22000/2007.10.02 Accessed 29 January 2019
- J. Pokki, O. Ergeneman, G. Chatzipirpiridis, T. Lühmann, J. Sort, E. Pellicer, S.A. Pot, B.M. Spiess, S. Pane, B.J. Nelson, Protective coatings for intraocular wirelessly controlled microrobots for implantation: Corrosion, cell culture, and in vivo animal tests. J. Biomed. Mater. Res. B 105, 836–845 (2017)CrossRefGoogle Scholar
- Ross, P., 2007. Extraordinary animals: an encyclopedia of curious and unusual animals. Greenwood Publishing Group, Santa Barbara, CA, USAGoogle Scholar
- G.C. Rump, Kunst kontra Technik? Wechselwirkungen zwischen Kunst, Naturwissenschaft und Technik by Herbert W. Franke. Leonardo 12, 74–75 (1979)CrossRefGoogle Scholar
- A. Servant, F. Qiu, M. Mazza, K. Kostarelos, B.J. Nelson, Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27, 2981–2988 (2015)CrossRefGoogle Scholar
- X. Shen, C. Viney, E.R. Johnson, C. Wang, J.Q. Lu, Large negative thermal expansion of a polymer driven by a submolecular conformational change. Nat. Chem. 5, 1035 (2013)CrossRefGoogle Scholar
- S. Tottori, L. Zhang, F. Qiu, K.K. Krawczyk, A. Franco-Obregón, B.J. Nelson, Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811 (2012)CrossRefGoogle Scholar
- Wang, G., Liu, W., Sivaprakasam, M., Humayun, M. S., Weiland, J. D., 2005. Power supply topologies for biphasic stimulation in inductively powered implants. In Power supply topologies for biphasic stimulation in inductively powered implants, Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, IEEE, pp 2743–2746Google Scholar
- D.B. Weibel, P. Garstecki, D. Ryan, W.R. DiLuzio, M. Mayer, J.E. Seto, G.M. Whitesides, Microoxen: Microorganisms to move microscale loads. P. Natl. Acad. Sci. USA 102, 11963–11967 (2005)CrossRefGoogle Scholar
- Whelan, P. M., Hodgson, M. J., 1987. Essential principles of physics. J. W. Arrowmith ltd London, LN, UKGoogle Scholar
- S. Xie, N. Jiao, S. Tung, L. Liu, Controlled regular locomotion of algae cell microrobots. Biomed. Microdevices 18, 47 (2016)CrossRefGoogle Scholar
- S. Xie, X. Wang, N. Jiao, S. Tung, L. Liu, Programmable micrometer-sized motor array based on live cells. Lab Chip 17, 2046 (2017)CrossRefGoogle Scholar
- H. Xu, M. Medina-Sánchez, V. Magdanz, L. Schwarz, F. Hebenstreit, O.G. Schmidt, Sperm-hybrid micromotor for targeted drug delivery. ACS Nano (1) (2017)Google Scholar
- X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu, J. Xu, T. Xu, T. Tang, L. Bian, Y.-X.J. Wang, K. Kostarelos, L. Zhang, Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot 2, 1155 (2017)CrossRefGoogle Scholar
- C. Zhang, S. Xie, W. Wang, N. Xi, Y. Wang, L. Liu, Bio-syncretic tweezers actuated by microorganisms: Modeling and analysis. Soft Matter 12, 7485 (2016)CrossRefGoogle Scholar