Advertisement

Biomedical Microdevices

, 21:15 | Cite as

An electromagnetic anglerfish-shaped millirobot with wireless power generation

  • Jingyi Wang
  • Niandong JiaoEmail author
  • Xiaodong Wang
  • Daojing Lin
  • Steve Tung
  • Lianqing Liu
Article
  • 251 Downloads

Abstract

Female anglerfishes have a lantern-shape luminous organ sprouting from the middle of their heads to lure their prey in the dark deep sea. Inspired by the anglerfish, we designed an electromagnetic anglerfish-shaped millirobot that can receive energy and transform it into light to attract algae cells to specific locations. The small wireless powered robot can receive about 658 mW of power from external energy supply coils, and light LEDs (light-emitting diodes). The wireless power generation and moving control of the robot are analyzed systematically. Transmitting electric energy to smaller scale receivers to endow milli or micro robots with wireless power function is an interesting and promising research direction. With this function, the wireless powered robot is expected to be extensively used at the small scale in the near future, such as to provide electricity to drive microdevices (microgrippers, microsensors, etc.), provide light or heat in small-scale space, stimulate/kill pathological cells in minimally invasive treatment and so on.

Keywords

Electromagnetic millirobot Bio-inspired Anglerfish Wireless power transfer Pandorina morum 

Notes

Acknowledgements

This paper is supported by National Natural Science Foundation of China (Grant No. 61573339) and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Supplementary material

ESM 1

(WMV 12307 kb)

ESM 2

(WMV 9313 kb)

References

  1. A. Búzás, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, P. Ormos, Light sailboats: Laser driven autonomous microrobots. Appl. Phys. Lett. 101, 737 (2012)CrossRefGoogle Scholar
  2. B.L. Cannon, J.F. Hoburg, D.D. Stancil, S.C. Goldstein, Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE. T. Power. Electr 24, 1819–1825 (2009)CrossRefGoogle Scholar
  3. G. Chatzipirpiridis, O. Ergeneman, J. Pokki, F. Ullrich, S. Fusco, J.A. Ortega, K.M. Sivaraman, B.J. Nelson, S. Pané, Electroforming of implantable tubular magnetic microrobots for wireless ophthalmologic applications. Adv. Healthc. Mater 4, 209–214 (2015)CrossRefGoogle Scholar
  4. X.Z. Chen, M. Hoop, N. Shamsudhin, T. Huang, B. Özkale, Q. Li, E. Siringil, F. Mushtaq, L. Di Tizio, B.J. Nelson, Hybrid magnetoelectric nanowires for nanorobotic applications: Fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv. Mater. 29 (2017)Google Scholar
  5. S.E. Chung, X. Dong, M. Sitti, Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper. Lab Chip 15(7), 1667–1676 (2015)CrossRefGoogle Scholar
  6. B. Dai, J. Wang, Z. Xiong, X. Zhan, W. Dai, C.C. Li, S.P. Feng, J. Tang, Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11, 1087 (2016)CrossRefGoogle Scholar
  7. O.P. Ernst, P.A.S. Murcia, P. Daldrop, S.P. Tsunoda, S. Kateriya, P. Hegemann, Photoactivation of channelrhodopsin. J. Biol. Chem. 283, 1637–1643 (2008)CrossRefGoogle Scholar
  8. Finkenzeller, K., 2010. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and near-Field Communication. John Wiley & SonsGoogle Scholar
  9. K. Foster, R. Smyth, Light antennas in phototactic algae. Microbiol. Rev. 1980(44), 572–630 (1980)Google Scholar
  10. H.W. Huang, M.S. Sakar, A.J. Petruska, S. Pané, B.J. Nelson, Soft micromachines with programmable motility and morphology. Nat. Commun. 7, 12263 (2016)CrossRefGoogle Scholar
  11. S. Jeon, G. Jang, H. Choi, S. Park, J. Park, Magnetic navigation system for the precise helical and translational motions of a microrobot in human blood vessels. J. Appl. Phys. 111, 55 (2012)CrossRefGoogle Scholar
  12. Jiles, D., 2015. Introduction to magnetism and magnetic materials. CRC press, Boca Raton, FL, USAGoogle Scholar
  13. B. Kherzi, M. Pumera, Self-propelled autonomous nanomotors meet microfluidics. Nanoscale 8, 17415 (2006)CrossRefGoogle Scholar
  14. S. Martel, C.C. Tremblay, S. Ngakeng, G. Langlois, Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl. Phys. Lett. 89, 257–681 (2006)CrossRefGoogle Scholar
  15. S. Martel, O. Felfoul, J.B. Mathieu, A. Chanu, S. Tamaz, M. Mohammadi, M. Mankiewicz, N. Tabatabaei, MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int. J. Robot. Res. 28, 1169 (2009)CrossRefGoogle Scholar
  16. R. Mhanna, F. Qiu, L. Zhang, Y. Ding, K. Sugihara, M. Zenobi-Wong, B.J. Nelson, Artificial bacterial flagella for remote-controlled targeted single-cell drug delivery. Small 10, 1953–1957 (2014)CrossRefGoogle Scholar
  17. W.T. O'Day, H.R. Fernandez, Aristostomias scintillans (Malacosteidae): A deep-sea fish with visual pigments apparently adapted to its own bioluminescence. Vis. Res. 14, 545–550 (1974)CrossRefGoogle Scholar
  18. N. Okita, N. Isogai, M. Hirono, R. Kamiya, K. Yoshimura, Phototactic activity in Chlamydomonas 'non-phototactic' mutants deficient in Ca2+−dependent control of flagellar dominance or in inner-arm dynein. J. Cell Sci. 118, 529–530 (2005)CrossRefGoogle Scholar
  19. S. Palagi, A.G. Mark, S.Y. Reigh, K. Melde, T. Qiu, H. Zeng, C. Parmeggiani, D. Martella, A. Sanchez-Castillo, N. Kapernaum, Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15, 647 (2016)CrossRefGoogle Scholar
  20. Pietsch, T. W., Kenaley, C. P., 2007. Ceratioidei. Seadevils, Devilfishes, Deep-sea Anglerfishes. Version 02 October 2007 (under construction). in The Tree of Life Web Project, http://tolweb.org/Ceratioidei/22000/2007.10.02 Accessed 29 January 2019
  21. J. Pokki, O. Ergeneman, G. Chatzipirpiridis, T. Lühmann, J. Sort, E. Pellicer, S.A. Pot, B.M. Spiess, S. Pane, B.J. Nelson, Protective coatings for intraocular wirelessly controlled microrobots for implantation: Corrosion, cell culture, and in vivo animal tests. J. Biomed. Mater. Res. B 105, 836–845 (2017)CrossRefGoogle Scholar
  22. Ross, P., 2007. Extraordinary animals: an encyclopedia of curious and unusual animals. Greenwood Publishing Group, Santa Barbara, CA, USAGoogle Scholar
  23. G.C. Rump, Kunst kontra Technik? Wechselwirkungen zwischen Kunst, Naturwissenschaft und Technik by Herbert W. Franke. Leonardo 12, 74–75 (1979)CrossRefGoogle Scholar
  24. A. Servant, F. Qiu, M. Mazza, K. Kostarelos, B.J. Nelson, Controlled in vivo swimming of a swarm of bacteria-like microrobotic flagella. Adv. Mater. 27, 2981–2988 (2015)CrossRefGoogle Scholar
  25. X. Shen, C. Viney, E.R. Johnson, C. Wang, J.Q. Lu, Large negative thermal expansion of a polymer driven by a submolecular conformational change. Nat. Chem. 5, 1035 (2013)CrossRefGoogle Scholar
  26. S. Tottori, L. Zhang, F. Qiu, K.K. Krawczyk, A. Franco-Obregón, B.J. Nelson, Magnetic helical micromachines: Fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811 (2012)CrossRefGoogle Scholar
  27. Wang, G., Liu, W., Sivaprakasam, M., Humayun, M. S., Weiland, J. D., 2005. Power supply topologies for biphasic stimulation in inductively powered implants. In Power supply topologies for biphasic stimulation in inductively powered implants, Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, IEEE, pp 2743–2746Google Scholar
  28. D.B. Weibel, P. Garstecki, D. Ryan, W.R. DiLuzio, M. Mayer, J.E. Seto, G.M. Whitesides, Microoxen: Microorganisms to move microscale loads. P. Natl. Acad. Sci. USA 102, 11963–11967 (2005)CrossRefGoogle Scholar
  29. Whelan, P. M., Hodgson, M. J., 1987. Essential principles of physics. J. W. Arrowmith ltd London, LN, UKGoogle Scholar
  30. S. Xie, N. Jiao, S. Tung, L. Liu, Controlled regular locomotion of algae cell microrobots. Biomed. Microdevices 18, 47 (2016)CrossRefGoogle Scholar
  31. S. Xie, X. Wang, N. Jiao, S. Tung, L. Liu, Programmable micrometer-sized motor array based on live cells. Lab Chip 17, 2046 (2017)CrossRefGoogle Scholar
  32. H. Xu, M. Medina-Sánchez, V. Magdanz, L. Schwarz, F. Hebenstreit, O.G. Schmidt, Sperm-hybrid micromotor for targeted drug delivery. ACS Nano (1) (2017)Google Scholar
  33. X. Yan, Q. Zhou, M. Vincent, Y. Deng, J. Yu, J. Xu, T. Xu, T. Tang, L. Bian, Y.-X.J. Wang, K. Kostarelos, L. Zhang, Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot 2, 1155 (2017)CrossRefGoogle Scholar
  34. C. Zhang, S. Xie, W. Wang, N. Xi, Y. Wang, L. Liu, Bio-syncretic tweezers actuated by microorganisms: Modeling and analysis. Soft Matter 12, 7485 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jingyi Wang
    • 1
  • Niandong Jiao
    • 1
    Email author
  • Xiaodong Wang
    • 1
  • Daojing Lin
    • 1
  • Steve Tung
    • 1
    • 2
  • Lianqing Liu
    • 1
  1. 1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Institutes for Robotics and Intelligent ManufacturingChinese Academy of SciencesShenyangChina
  2. 2.Department of Mechanical EngineeringUniversity of ArkansasFayettevilleUSA

Personalised recommendations