Advertisement

Study of diffusive- and convective-transport mediated microtumor growth in a controlled microchamber

  • Yu-Hsiang HsuEmail author
  • Wei-Wen Liu
  • Tung-Han Wu
  • Carina Jean-Tien Lee
  • Yu-Hsi Chen
  • Pai-Chi Li
Article
  • 44 Downloads

Abstract

In this paper, we report on using mass transport to control nutrition supply of colorectal cancer cells for developing a microtumor in a confined microchamber. To mimic the spatial heterogeneity of a tumor, two microfluidic configurations based on resistive circuits are designed. One has a convection-dominated microchamber to simulate the tumor region proximal to leaky blood vessels. The other has a diffusion-dominated microchamber to mimic the tumor core that lacks blood vessels and nutrient supply. Thus, the time for nutrition to fill the microchamber can vary from tens of minutes to several hours. Results show that cells cultured under a diffusive supply of nutrition have a high glycolytic rate and a nearly constant oxygen consumption rate. In contrast, cells cultured under convective supply of nutrition have a gradual increase of oxygen consumption rate with a low glycolytic rate. This suggests that cancer cells have distinct reactions under different mass transport and nutrition supply. Using these two microfluidic platforms to create different rate of nutrition supply, it is found that a continuous microtumor that almost fills the mm-size microchamber can be developed under a low-nutrient supply environment, but not for the convective condition. It also is demonstrated that microchannels can simulate the delivery of anti-cancer drugs to the microtumor under controlled mass-transport. This method provides a means to develop a larger scale microtumor in a lab-on-a-Chip system for post development and stimulations, and microchannels can be applied to control the physical and chemical environment for anti-cancer drug screening.

Keywords

Tumor-on-a-Chip Mass transport Microfluidics Tumor metabolic Drug screening 

Notes

Acknowledgements

This work was supported by the National Health Research Institutes, Taiwan (NHRI-EX106-10624EI) and the Ministry of Science and Technology, Taiwan (MOST 103-2221-E-002-161-MY2 & MOST 105-2221-E-002-230-MY3).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. P. Agarwal, H. Wang, M. Sun, J. Xu, S. Zhao, Z. Liu, K.J. Gooch, Y. Zhao, X. Lu, X. He, Microfluidics enabled bottom-up engineering of 3D vascularized tumor for drug discovery. ACS Nano 11(7), 6691–6702 (2017).  https://doi.org/10.1021/acsnano.7b00824 CrossRefGoogle Scholar
  2. J. Ahn, Y.J. Sei, N.L. Jeon, Y.T. Kim, Tumor microenvironment on a chip: The progress and future perspective. Bioengineering 4(3), 64 (2017).  https://doi.org/10.3390/bioengineering4030064 CrossRefGoogle Scholar
  3. A. Albanese, A.K. Lam, E.A. Sykes, J.V. Rocheleau, W.C.W. Chan, Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat. Commun. 4, 2718 (2013).  https://doi.org/10.1038/ncomms3718 CrossRefGoogle Scholar
  4. S. Bersini, J.S. Jeon, G. Dubini, C. Arrigoni, S. Chung, J.L. Charest, M. Moretti, R.D. Kamm, A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35(8), 2454–2461 (2014).  https://doi.org/10.1016/j.biomaterials.2013.11.050 CrossRefGoogle Scholar
  5. B. Chen, Y. Liu, X. Jin, W. Lu, J. Liu, Z. Xia, Q. Yuan, X. Zhao, N. Xu, S. Lian, MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells. BMC Cancer 14, 443 (2014).  https://doi.org/10.1186/1471-2407-14-443 CrossRefGoogle Scholar
  6. R. Diaz-Ruiz, M. Rigoulet, A. Devin, The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim. Biophys. Acta, Rev. Bioenerg. 1807(6), 568–576 (2011).  https://doi.org/10.1016/j.bbabio.2010.08.010 CrossRefGoogle Scholar
  7. A. Fadaka, B. Ajiboye, O. Ojo, O. Adewale, I. Olayide, R. Emuowhochere, Biology of glucose metabolization in cancer cells. J. Oncol. Sci. 3(2), 45–51 (2017).  https://doi.org/10.1016/j.jons.2017.06.002 CrossRefGoogle Scholar
  8. N. Hammad, M. Rosas-Lemus, S. Uribe-Carvajal, M. Rigoulet, A. Devin, The Crabtree and Warburg effects: Do metabolite-induced regulations participate in their induction? Biochim. Biophys. Acta, Rev. Bioenerg. 1857(8), 1139–1146 (2016).  https://doi.org/10.1016/j.bbabio.2016.03.034 CrossRefGoogle Scholar
  9. Y.H. Hsu, M.L. Moya, P. Abiri, C.C. Hughes, S.C. George, A.P. Lee, Full range physiological mass transport control in 3D tissue cultures. Lab Chip 13(1), 81–89 (2013a).  https://doi.org/10.1039/c2lc40787f CrossRefGoogle Scholar
  10. Y.H. Hsu, M.L. Moya, C.C.W. Hughes, S.C. George, A.P. Lee, A microfluidic platform for generating large-scale nearly identical human microphysiological system arrays. Lab Chip 13(15), 2990–2998 (2013b).  https://doi.org/10.1039/c3lc50424g CrossRefGoogle Scholar
  11. J.S. Jeon, S. Bersini, M. Gilardi, G. Dubini, J.L. Charest, M. Moretti, R.D. Kamm, Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl. Acad. Sci. U. S. A. 112(1), 214–219 (2015).  https://doi.org/10.1073/pnas.1417115112 CrossRefGoogle Scholar
  12. N. Kashaninejad, M.R. Nikmaneshi, H. Moghadas, A.K. Oskouei, M. Rismanian, M. Barisam, M.S. Saidi, B. Firoozabadi, Organ-tumor-on-a-chip for chemosensitivity assay: A critical review. Micromachines 7(8), 130 (2016).  https://doi.org/10.3390/mi7080130 CrossRefGoogle Scholar
  13. M.E. Katt, A.L. Placone, A.D. Wong, Z.S. Xu, P.C. Searson, In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Front Bioeng. Biotechnol. 4, 12 (2016).  https://doi.org/10.3389/fbioe.2016.00012 CrossRefGoogle Scholar
  14. C. Kim, J. Kasuya, J. Jeon, S. Chunge, R.D. Kamm, A quantitative microfluidic angiogenesis screen for studying anti-angiogenic therapeutic drugs. Lab Chip 15(1), 301–310 (2015).  https://doi.org/10.1039/c4lc00866a CrossRefGoogle Scholar
  15. D.S. Kim, M.W. Lee, T.H. Lee, K.W. Sung, H.H. Koo, K.H. Yoo, Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells. Biomed. Rep. 6(3), 300–306 (2017).  https://doi.org/10.3892/br.2017.845 CrossRefGoogle Scholar
  16. H. Lee, W. Park, H. Ryu, N.L. Jeon, A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation. Biomicrofluidics 8(5), 054102 (2014).  https://doi.org/10.1063/1.4894595 CrossRefGoogle Scholar
  17. C.L. Limoli, R. Rola, E. Giedzinski, S. Mantha, T.T. Huang, J.R. Fike, Cell-density-dependent regulation of neural precursor cell function. Proc. Natl. Acad. Sci. U. S. A. 101(45), 16052–16057 (2004).  https://doi.org/10.1073/pnas.0407065101 CrossRefGoogle Scholar
  18. K. Luongo, A. Holton, A. Kaushik, P. Spence, B. Ng, R. Deschenes, S. Sundaram, S. Bhansali, Microfluidic device for trapping and monitoring three dimensional multicell spheroids using electrical impedance spectroscopy. Biomicrofluidics 7, 034108 (2013).  https://doi.org/10.1063/1.4809590 CrossRefGoogle Scholar
  19. C.A. Lyssiotis, A.C. Kimmelman, Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 27(11), 863–875 (2017).  https://doi.org/10.1016/j.tcb.2017.06.003 CrossRefGoogle Scholar
  20. F.R. Maia, A.H. Lourenço, P.L. Granja, R.M. Gonçalves, C.C. Barrias, Effect of cell density on mesenchymal stem cells aggregation in RGD-alginate 3D matrices under osteoinductive conditions. Macromol. Biosci. 14(6), 759–771 (2014).  https://doi.org/10.1002/mabi.201300567 CrossRefGoogle Scholar
  21. R. Moreno-Sánchez, S. Rodríguez-Enríquez, A. Marín-Hernández, E. Saavedra, Energy metabolism in tumor cells. FEBS J. 274, 1393–1418 (2007).  https://doi.org/10.1111/j.1742-4658.2007.05686.x CrossRefGoogle Scholar
  22. B. Muz, P. de la Puente, F. Azab, A.K. Azab, The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 3, 83–92 (2015).  https://doi.org/10.2147/HP.S93413 CrossRefGoogle Scholar
  23. Y. Nashimoto, T. Hayashi, I. Kunita, A. Nakamasu, Y.S. Torisawa, M. Nakayama, H. Takigawa-Imamura, H. Kotera, K. Nishiyama, T. Miura, R. Yokokawa, Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr. Biol. 9, 506–518 (2017).  https://doi.org/10.1039/C7IB00024C CrossRefGoogle Scholar
  24. K.W. Oh, K. Lee, B. Ahn, E.P. Furlani, Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 12(3), 515–545 (2012).  https://doi.org/10.1039/c2lc20799k CrossRefGoogle Scholar
  25. D.T.T. Phan, X. Wang, B.M. Craver, A. Sobrino, D. Zhao, J.C. Chen, L.Y.N. Lee, S.C. George, A.P. Lee, C.C.W. Hughes, A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications. Lab Chip 17(3), 511–520 (2017).  https://doi.org/10.1039/c6lc01422d CrossRefGoogle Scholar
  26. A. Provenzani, R. Fronza, F. Loreni, A. Pascale, M. Amadio, A. Quattrone, Global alterations in mRNA polysomal recruitment in a cell model of colorectal cancer progression to metastasis. Carcinogenesis 27(7), 1323–1333 (2006).  https://doi.org/10.1093/carcin/bgi377 CrossRefGoogle Scholar
  27. K.J. Rakesh, Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 50(3 Suppl), 814s–819s (1990) http://cancerres.aacrjournals.org/content/50/3_Supplement/814s Google Scholar
  28. K.J. Rakesh, Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 46, 149–168 (2001).  https://doi.org/10.1016/S0169-409X(00)00131-9 CrossRefGoogle Scholar
  29. R. Riahi, Y.L. Yang, H. Kim, L. Jiang, P.K. Wong, Y. Zohar, A microfluidic model for organ-specific extravasation of circulating tumor cells. Biomicrofluidics 8, 024103 (2014).  https://doi.org/10.1063/1.4868301 CrossRefGoogle Scholar
  30. V. Rustamov, R. Rudolf, V. Yagublu, H.M. Kuhn, M. Vitacolonna, M. Hafner, Long-term 3D culture of the SCC4 cell line using three different culture methods and initial seeding densities. J. Cell. Biotechnol. 3(1), 41–50 (2017).  https://doi.org/10.3233/JCB-179005 CrossRefGoogle Scholar
  31. E. Sano, C. Mori, Y. Nashimoto, R. Yokokawa, H. Kotera, Y. Torisawa, Engineering of vascularized 3D cell constructs to model cellular interactions through a vascular network. Biomicrofluidics 12, 042204 (2018).  https://doi.org/10.1063/1.5027183 CrossRefGoogle Scholar
  32. M.K. Shin, S.K. Kim, H. Jung, Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis. Lab Chip 11, 3880–3887 (2011).  https://doi.org/10.1039/c1lc20671k CrossRefGoogle Scholar
  33. M. Singh, D.A. Close, S. Mukundan, P.A. Johnston, S. Sant, Production of uniform 3D microtumors in hydrogel microwell arrays for measurement of viability, morphology, and signaling pathway activation. Assay Drug Dev. Technol. 13(9), 570–583 (2015).  https://doi.org/10.1089/adt.2015.662 CrossRefGoogle Scholar
  34. A. Sobrino, D.T. Phan, R. Datta, X. Wang, S.J. Hachey, M. Romero-López, E. Gratton, A.P. Lee, S.C. George, C.C. Hughes, 3D microtumors in vitro supported by perfused vascular networks. Sci. Rep. 6, 31589 (2016).  https://doi.org/10.1038/srep31589 CrossRefGoogle Scholar
  35. A.D. Stroock, C. Fischbach, Microfluidic culture models of tumor angiogenesis. Tissue Eng. A 16(7), 2143–2146 (2010).  https://doi.org/10.1089/ten.tea.2009.0689 CrossRefGoogle Scholar
  36. H.F. Tsai, A. Trubelja, A.Q. Shen, G. Bao, Tumour-on-a-chip: Microfluidic models of tumour morphology, growth and microenvironment. J. R. Soc. Interface 14, 20170137 (2017).  https://doi.org/10.1098/rsif.2017.0137 CrossRefGoogle Scholar
  37. M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324(5930), 1029–1033 (2009).  https://doi.org/10.1126/science.1160809 CrossRefGoogle Scholar
  38. J.M. Wiggins, A.B. Opoku-Acheampong, D.R. Baumfalk, D.W. Siemann, B.J. Behnke, Exercise and the tumor microenvironment: Potential therapeutic implications. Exerc. Sport Sci. Rev. 46(1), 56–64 (2018).  https://doi.org/10.1249/JES.0000000000000137 CrossRefGoogle Scholar
  39. I.K. Zervantonakis, S.K. Hughes-Alford, J.L. Charest, J.S. Condeelis, F.B. Gertler, R.D. Kamm, Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function. Proc. Natl. Acad. Sci. U. S. A. 109(34), 13515–13520 (2012).  https://doi.org/10.1073/pnas.1210182109 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied MechanicsNational Taiwan UniversityTaipeiRepublic of China
  2. 2.Institute of Biomedical Electronics and BioinformaticsNational Taiwan UniversityTaipeiRepublic of China

Personalised recommendations