LampPort: a handheld digital microfluidic device for loop-mediated isothermal amplification (LAMP)

  • Liang Wan
  • Jie Gao
  • Tianlan Chen
  • Cheng Dong
  • Haoran Li
  • Yan-Zi Wen
  • Zhao-Rong Lun
  • Yanwei JiaEmail author
  • Pui-In Mak
  • Rui P. Martins


A major goal in the development of point-of-care (POC) devices is to build them as portable to provide a rapid and effective determination for disease pathogens. In nucleic acid testing, an optical detection system used to monitor the product of nucleic acid amplification has always been a bulky accessory. In this work, we developed a handheld, automatic and detection system-free thermal digital microfluidic (DMF) device for DNA detection by loop-mediated isothermal amplification (LAMP). Droplet manipulation and real-time temperature control systems were integrated into a handheld device. The control software could be installed into any tablet and communicate with the device via Bluetooth. In the experimentation, we loaded 2-μl samples with an electrowetting force into sandwich-structured DMF chips, thereby considerably reducing reagent consumptions. After an on-chip LAMP reaction, we added a highly concentrated SYBR Green I droplet and mixed it with a reaction droplet to enable product detection with the naked eye. This step prevented aerosol contamination by avoiding the exposure of the reaction droplet to the air. Using a blood parasite Trypanosoma brucei as a model system, this system showed similar results as a commercial thermal cycler and could detect 40 copies per reaction of the DNA target. This low-cost, compact device removed the bulky optical system for DNA detection, thus enabling it to be well suited for POC testing.


Digital microfluidic system Handheld device Loop-mediated isothermal amplification (LAMP) Naked-eye visualisation 



This work was supported by FDCT110/2016/A3 and AMSV SKL Fund from the Macao Science and Technology Development Fund (FDCT), MYRG2017-00022-AMSV and SRG2016-00072-AMSV from the University of Macau, and #31720103918 from the National Natural Science Foundation of China.

Supplementary material

10544_2018_354_MOESM1_ESM.docx (2.6 mb)
ESM 1 (DOCX 2658 kb) (7.1 mb)
Video S1 (MOV 7275 kb) (5.3 mb)
Video S2 (MOV 5435 kb) (6.4 mb)
Video S3 (MOV 6520 kb)


  1. M. Berriman et al., The genome of the African trypanosome Trypanosoma brucei. Science 309, 416–422 (2005). CrossRefGoogle Scholar
  2. B. Coelho, B. Veigas, E. Fortunato, R. Martins, H. Aguas, R. Igreja, P.V. Baptista, Digital microfluidics for nucleic acid amplification. Sensors (Basel) 17 (2017a). CrossRefGoogle Scholar
  3. B.J. Coelho, B. Veigas, H. Aguas, E. Fortunato, R. Martins, P.V. Baptista, R. Igreja, A digital microfluidics platform for loop-mediated isothermal amplification detection. Sensors (Basel) 17 (2017b). CrossRefGoogle Scholar
  4. P. Craw, R.E. Mackay, A. Naveenathayalan, C. Hudson, M. Branavan, S.T. Sadiq, W. Balachandran, A simple, low-cost platform for real-time isothermal nucleic acid amplification. Sensors (Basel) 15, 23418–23430 (2015). CrossRefGoogle Scholar
  5. C. Dong, Y. Jia, J. Gao, T. Chen, P.I. Mak, M.I. Vai, R.P. Martins, A 3D microblade structure for precise and parallel droplet splitting on digital microfluidic chips. Lab Chip 17, 896–904 (2017). CrossRefGoogle Scholar
  6. P.K. Drain, E.P. Hyle, F. Noubary, K.A. Freedberg, D. Wilson, W.R. Bishai, W. Rodriguez, I.V. Bassett, Diagnostic point-of-care tests in resource-limited settings. Lancet Infect. Dis. 14, 239–249 (2014). CrossRefGoogle Scholar
  7. J. Gao, X. Liu, T. Chen, P.I. Mak, Y. Du, M.I. Vai, B. Lin, R.P. Martins, An intelligent digital microfluidic system with fuzzy-enhanced feedback for multi-droplet manipulation. Lab Chip 13, 443–451 (2013). CrossRefGoogle Scholar
  8. M. Goto, E. Honda, A. Ogura, A. Nomoto, K. Hanaki, Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques 46, 167–172 (2009). CrossRefGoogle Scholar
  9. T. Iwamoto, T. Sonobe, K. Hayashi, Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J. Clin. Microbiol. 41, 2616–2622 (2003)CrossRefGoogle Scholar
  10. A.P. Jackson, M. Sanders, A. Berry, J. McQuillan, M.A. Aslett, M.A. Quail, B. Chukualim, P. Capewell, A. MacLeod, S.E. Melville, W. Gibson, J.D. Barry, M. Berriman, C. Hertz-Fowler, The genome sequence of Trypanosoma brucei gambiense, causative agent of chronic human african trypanosomiasis. PLoS Negl. Trop. Dis. 4, e658 (2010). CrossRefGoogle Scholar
  11. S. Kalsi, M. Valiadi, M.N. Tsaloglou, L. Parry-Jones, A. Jacobs, R. Watson, C. Turner, R. Amos, B. Hadwen, J. Buse, C. Brown, M. Sutton, H. Morgan, Rapid and sensitive detection of antibiotic resistance on a programmable digital microfluidic platform. Lab Chip 15, 3065–3075 (2015). CrossRefGoogle Scholar
  12. K. Karthik, R. Rathore, P. Thomas, T.R. Arun, K.N. Viswas, K. Dhama, R.K. Agarwal, New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination. MethodsX 1, 137–143 (2014). CrossRefGoogle Scholar
  13. M. Kuhnemund, D. Witters, M. Nilsson, J. Lammertyn, Circle-to-circle amplification on a digital microfluidic chip for amplified single molecule detection. Lab Chip 14, 2983–2992 (2014). CrossRefGoogle Scholar
  14. S.M. Lanham, D.G. Godfrey, Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp. Parasitol. 28, 521–534 (1970)CrossRefGoogle Scholar
  15. C. Liang, S. Cheng, Y. Chu, H. Wu, B. Zou, H. Huang, T. Xi, G. Zhou, A closed-tube detection of loop-mediated isothermal amplification (LAMP) products using a wax-sealed fluorescent intercalator. J. Nanosci. Nanotechnol. 13, 3999–4005 (2013)CrossRefGoogle Scholar
  16. M.G. Mauk, J. Song, C. Liu, H.H. Bau, Simple approaches to minimally-instrumented, microfluidic-based point-of-care nucleic acid amplification tests. Biosensors (Basel) 8 (2018). CrossRefGoogle Scholar
  17. Y. Mori, K. Nagamine, N. Tomita, T. Notomi, Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochem. Biophys. Res. Commun. 289, 150–154 (2001). CrossRefGoogle Scholar
  18. F.B. Myers, R.H. Henrikson, J.M. Bone, L.P. Lee, A handheld point-of-care genomic diagnostic system. PLoS One 8, e70266 (2013). CrossRefGoogle Scholar
  19. K. Nagamine, T. Hase, T. Notomi, Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16, 223–229 (2002)CrossRefGoogle Scholar
  20. A. Niemz, T.M. Ferguson, D.S. Boyle, Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29, 240–250 (2011). CrossRefGoogle Scholar
  21. Z.K. Njiru, A.S. Mikosza, T. Armstrong, J.C. Enyaru, J.M. Ndung'u, A.R. Thompson, Loop-mediated isothermal amplification (LAMP) method for rapid detection of Trypanosoma brucei rhodesiense. PLoS Negl. Trop. Dis. 2, e147 (2008a). CrossRefGoogle Scholar
  22. Z.K. Njiru, A.S. Mikosza, E. Matovu, J.C. Enyaru, J.O. Ouma, S.N. Kibona, R.C. Thompson, J.M. Ndung'u, African trypanosomiasis: Sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA. Int. J. Parasitol. 38, 589–599 (2008b). CrossRefGoogle Scholar
  23. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:E63, 63eCrossRefGoogle Scholar
  24. I.P. Oscorbin, E.A. Belousova, A.I. Zakabunin, U.A. Boyarskikh, M.L. Filipenko, Comparison of fluorescent intercalating dyes for quantitative loop-mediated isothermal amplification (qLAMP). Biotechniques 61, 20–25 (2016). CrossRefGoogle Scholar
  25. C.M. Pandey, S. Augustine, S. Kumar, S. Kumar, S. Nara, S. Srivastava, B.D. Malhotra, Microfluidics based point-of-care diagnostics. Biotechnol. J. 13 (2018). CrossRefGoogle Scholar
  26. M.M. Parida, S.R. Santhosh, P.K. Dash, N.K. Tripathi, P. Saxena, S. Ambuj, A.K. Sahni, P.V. Lakshmana Rao, K. Morita, Development and evaluation of reverse transcription-loop-mediated isothermal amplification assay for rapid and real-time detection of Japanese encephalitis virus. J. Clin. Microbiol. 44, 4172–4178 (2006). CrossRefGoogle Scholar
  27. S. Sharma, J. Zapatero-Rodriguez, P. Estrela, R. O'Kennedy, Point-of-care diagnostics in low resource settings: Present status and future role of microfluidics. Biosensors (Basel) 5, 577–601 (2015). CrossRefGoogle Scholar
  28. J. Song, M.G. Mauk, B.A. Hackett, S. Cherry, H.H. Bau, C. Liu, Instrument-free point-of-care molecular detection of Zika virus. Anal. Chem. 88, 7289–7294 (2016). CrossRefGoogle Scholar
  29. J. Sun, M.J. Najafzadeh, V. Vicente, L. Xi, G.S. de Hoog, Rapid detection of pathogenic fungi using loop-mediated isothermal amplification, exemplified by Fonsecaea agents of chromoblastomycosis. J. Microbiol. Methods 80, 19–24 (2010). CrossRefGoogle Scholar
  30. N. Tomita, Y. Mori, H. Kanda, T. Notomi, Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 3, 877–882 (2008). CrossRefGoogle Scholar
  31. A.H. Velders, C. Schoen, V. Saggiomo, Loop-mediated isothermal amplification (LAMP) shield for Arduino DNA detection. BMC Res Notes 11, 93 (2018). CrossRefGoogle Scholar
  32. L. Wan, T. Chen, J. Gao, C. Dong, A.H. Wong, Y. Jia, P.I. Mak, C.X. Deng, R.P. Martins, A digital microfluidic system for loop-mediated isothermal amplification and sequence specific pathogen detection. Sci. Rep. 7, 14586 (2017). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Analog and Mixed-Signal VLSIUniversity of MacauMacao SARChina
  2. 2.Department of ECE, Faculty of Science and TechnologyUniversity of MacauMacao SARChina
  3. 3.Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat-Sen UniversityGuangzhouChina
  4. 4.On leave from Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal

Personalised recommendations