Rapid and continuous on-chip loading of trehalose into erythrocytes

  • Yiren Shen
  • Kun Du
  • Lili Zou
  • Xiaoming Zhou
  • Rong Lv
  • Dayong Gao
  • Bensheng Qiu
  • Weiping DingEmail author


Freeze-drying is a promising approach for the long-term storage of erythrocytes at room temperature. Studies have shown that trehalose loaded into erythrocytes plays an important role in protecting erythrocytes against freeze-drying damage. Due to the impermeability of the erythrocyte membrane to trehalose, many methods have been developed to load trehalose into erythrocytes. However, these methods usually require multistep manual manipulation and long processing time; the adopted protocols are also diverse and not standardized. Thus, we develop an osmotically-based trehalose-loading microdevice (TLM) to rapidly, continuously, and automatically produce erythrocytes with loaded trehalose. In the TLM, trehalose is loaded through the erythrocyte membrane pores induced by hypotonic shock; then, the trehalose-loaded erythrocytes are rinsed to remove hemoglobin molecules and cell fragments, and the extracellular solution is restored to the isotonic state by integrating a rinsing-recovering design. First, the mixing function and the rinsing-recovering function were confirmed using a fluorescent solution. Then, the performance of the TLM was evaluated under various operating conditions with respect to the loading efficiency of trehalose, the hemolysis rate of erythrocytes (ϕ), the recovery rate of hemoglobin in erythrocytes (φ), and the separation efficiency of the TLM. Finally, the preliminary study of the freeze-drying of erythrocytes with loaded trehalose was accomplished using the TLM. The results showed that under the designated operating conditions, the loading efficiency for human erythrocytes reached ~21 mM in ~2 min with a ϕ value of ~17% and a φ value of ~74%. This study provides insights into the design of the on-chip loading of trehalose into erythrocytes and promotes the automation of life science studies on biochips.


Microfluidic Erythrocyte Trehalose On-chip loading Hypotonic shock 



This work was supported partially by the National Natural Science Foundation of China (81571768, 81627806). We would like to thank the Research Center for Life Sciences at the University of Science and Technology of China for assistance.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.

Supplementary material

10544_2018_352_MOESM1_ESM.docx (746 kb)
ESM 1 (DOCX 745 kb)


  1. F. Albertorio, V.A. Chapa, X. Chen, A.J. Diaz, P.S. Cremer, J. Am. Chem. Soc. 129, 10567 (2007)CrossRefGoogle Scholar
  2. A. Antonelli, S. Pacifico, C. Sfara, M. Tamma, M. Magnani, Nanomedicine-Uk 13, 675 (2018)CrossRefGoogle Scholar
  3. T. Bando, S. Kosaka, C.J. Liu, T. Hirai, T. Hirata, H. Yokomise, K. Yagi, K. Inui, S. Hitomi, H. Wada, J. Thorac. Cardiovasc. Surg. 108, 92 (1994)Google Scholar
  4. E. Beutler, W. Kuhl, Transfusion 28, 353 (1988)CrossRefGoogle Scholar
  5. G. Casagrande, F. Arienti, A. Mazzocchi, F. Taverna, F. Ravagnani, M. Costantino, Artif. Organs 40, 959 (2016)CrossRefGoogle Scholar
  6. T. Chen, J.P. Acker, A. Eroglu, S. Cheley, H. Bayley, A. Fowler, M.L. Toner, Cryobiology 43, 168 (2001)CrossRefGoogle Scholar
  7. J.H. Crowe, L.M. Crowe, Nat. Biotechnol. 18, 145 (2000)CrossRefGoogle Scholar
  8. J.H. Crowe, L.M. Crowe, D. Chapman, Science 223, 701 (1984)CrossRefGoogle Scholar
  9. J.H. Crowe, L.M. Crowe, A.E. Oliver, N. Tsvetkova, W. Wolkers, F. Tablin, Cryobiology 43, 89 (2001)CrossRefGoogle Scholar
  10. S.N. Dash, P. Routray, C. Dash, B.C. Guru, P. Swain, N. Sarangi, Curr Stem Cell Res T 3, 277 (2008)CrossRefGoogle Scholar
  11. T.A. Duncombe, A.M. Tentori, A.E. Herr, Nat. Rev. Mol. Cell Biol. 16, 554 (2015)CrossRefGoogle Scholar
  12. A. Farrugia, N. Shea, S. Knowles, R. Holdsworth, H. Piouronowski, D. Portbury, A. Romeo, J. Clin. Pathol. 46, 742 (1993)CrossRefGoogle Scholar
  13. F.T. Fischbach, M.B. Dunning, A Manual of Laboratory and Diagnostic Tests (Lippincott Williams & Wilkins, 2009)Google Scholar
  14. A.L. Ge, L. Hu, X.X. Wang, J.C. Zhu, X.J. Feng, W. Du, B.F. Liu, Sensor Actuat B-Chem 255, 735 (2018a)CrossRefGoogle Scholar
  15. D.B. Ge, L.L. Zou, C.P. Li, S. Liu, S.B. Li, S.J. Sun, W.P. Ding, Eur Biophys J Biophy 47, 261 (2018b)CrossRefGoogle Scholar
  16. N. Guo, I. Puhlev, D.R. Brown, J. Mansbridge, F. Levine, Nat. Biotechnol. 18, 168 (2000)CrossRefGoogle Scholar
  17. Y. Han, G.B. Quan, X.Z. Liu, E.P. Ma, A. Liu, P. Jin, W. Cao, Cryobiology 51, 152 (2005)CrossRefGoogle Scholar
  18. V. Han, K. Serrano, D.V. Devine, Vox Sang. 98, 116 (2010)CrossRefGoogle Scholar
  19. X. Han, C. Wang, Z. Liu, Bioconjug. Chem. 29, 852 (2018)CrossRefGoogle Scholar
  20. J.L. Holovati, M.I.C. Gyongyossy-Issa, J.P. Acker, Cryobiology 58, 75 (2009)CrossRefGoogle Scholar
  21. Y.F. Kang, L.L. Zou, B.S. Qiu, X. Liang, S.J. Sun, D.Y. Gao, W.P. Ding, Biomed. Microdevices 19, 15 (2017)CrossRefGoogle Scholar
  22. L. Kim, M.D. Vahey, H.Y. Lee, J. Voldman, Lab Chip 6, 394 (2006)CrossRefGoogle Scholar
  23. C. Kim, K. Lee, J.H. Kim, K.S. Shin, K.J. Lee, T.S. Kim, J.Y. Kang, Lab Chip 8, 473 (2008)CrossRefGoogle Scholar
  24. R.E. Lusianti, J.D. Benson, J.P. Acker, A.Z. Higgins, Biotechnol. Prog. 29, 609 (2013)CrossRefGoogle Scholar
  25. A.L. Lynch, N.K.H. Slater, Cryobiology 63, 26 (2011)CrossRefGoogle Scholar
  26. A.L. Lynch, R.J. Chen, P.J. Dominowski, E.Y. Shalaev, R.J. Yancey, N.K.H. Slater, Biomaterials 31, 6096 (2010)CrossRefGoogle Scholar
  27. A.L. Lynch, R.J. Chen, N.K.H. Slater, Biomaterials 32, 4443 (2011)CrossRefGoogle Scholar
  28. C. Mata, E. Longmire, D. McKenna, K. Glass, A. Hubel, Microfluid. Nanofluid. 8, 457 (2010)CrossRefGoogle Scholar
  29. D.B. Nguyen, L. Wagner-Britz, S. Maia, P. Steffen, C. Wagner, L. Kaestner, I. Bernhardt, Cell. Physiol. Biochem. 28, 847 (2011)CrossRefGoogle Scholar
  30. A.K. Parpart, P.B. Lorenz, E.R. Parpart, J.R. Gregg, A.M. Chase, J. Clin. Invest. 26, 636 (1947)CrossRefGoogle Scholar
  31. C. PellerinMendes, L. Million, M. MarchandArvier, P. Labrude, C. Vigneron, Cryobiology 35, 173 (1997)CrossRefGoogle Scholar
  32. A.R. Pries, D. Neuhaus, P. Gaehtgens, Am. J. Phys. 263, H1770 (1992)Google Scholar
  33. I. Puhlev, N. Guo, D.R. Brown, F. Levine, Cryobiology 42, 207 (2001)CrossRefGoogle Scholar
  34. G.B. Quan, Y. Han, M.X. Liu, F. Gao, Cryobiology 59, 258 (2009)CrossRefGoogle Scholar
  35. J.V. Ricker, N.M. Tsvetkova, W.F. Wolkers, C. Leidy, F. Tablin, M. Longo, J.H. Crowe, Biophys. J. 84, 3045 (2003)CrossRefGoogle Scholar
  36. G.R. Satpathy, Z. Torok, R. Bali, D.M. Dwyre, E. Little, N.J. Walker, F. Tablin, J.H. Crowe, N.M. Tsvetkova, Cryobiology 49, 123 (2004)CrossRefGoogle Scholar
  37. M. Stefanic, K. Ward, H. Tawfik, R. Seemann, V. Baulin, Y.C. Guo, J.B. Fleury, C. Drouet, Biomaterials 140, 138 (2017)CrossRefGoogle Scholar
  38. S.W. Tan, T.T. Wu, D. Zhang and Z.P. Zhang, Theranostics 5, 863 (2015)CrossRefGoogle Scholar
  39. L.N. Torres, K.K. Chung, C.L. Salgado, M.A. Dubick, I.P. Torres, Crit. Care 21, 160 (2017)CrossRefGoogle Scholar
  40. G.M. Whitesides, Nature 442, 368 (2006)CrossRefGoogle Scholar
  41. W.F. Wolkers, H. Oldenhof, F. Tablin, J.H. Crowe, Bba-Biomembranes 1661, 125 (2004)CrossRefGoogle Scholar
  42. X.L. Zhou, H. Zhu, S.Z. Zhang, F.M. Zhu, G.M. Chen, L.X. Yan, Cryoletters 28, 187 (2007)Google Scholar
  43. X.L. Zhou, H. He, B.L. Liu, T.C. Hua, Y. Chen, Cryoletters 29, 285 (2008)Google Scholar
  44. X.L. Zhou, J. Yuan, J.F. Liu, B.L. Liu, Cryoletters 31, 147 (2010)Google Scholar
  45. L.L. Zou, W.P. Ding, S.J. Sun, F.Q. Tang, D.Y. Gao, Cryobiology 71, 210 (2015)CrossRefGoogle Scholar
  46. L. Zou, S. Li, Y. Kang, J. Liu, L. He, S. Sun, D. Gao, B. Qiu, W. Ding, Biomed. Microdevices 19, 30 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Biomedical EngineeringUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina
  3. 3.School of Mechatronics EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  4. 4.Hefei Blood CenterHefeiChina
  5. 5.Department of Mechanical EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations