An analytic model of microfluidic system triggered by thermal expansion

  • Yan ShiEmail author
  • Qian Wu
  • Dongyang Sun
  • Cunfa Gao


Microfluidics shows a great importance in fluid control in biomedicine area. Recently, a programmable soft microfluidic system for applications of pharmacology and optogenetics is reported in Cell. Based on the theory of thermal expansion, we established an analytic model to characterize the injection process of the microfluidic systems. Finite element analyses (FEA) were employed to validate this model. The comparison between the analytic model and FEA well demonstrates the practicality of the analytic model. We also make a parametric analysis of sphere radius, central angle and expandable layer thickness on the infusion volume of the system to optimize the design.


Microfluidic Thermal expansion Analytic model Design 



Y. Shi and C.F. Gao acknowledge the support from the National Natural Science Foundation of China (Grant No. 11702131 and 11472130).


  1. A.R. Abate, D.A. Weitz, Single-layer membrane valves for elastomeric microfluidic devices. Appl. Phys. Lett. 92, 243509 (2008)CrossRefGoogle Scholar
  2. A.R. Abate, M.B. Romanowsky, J.J. Agresti, D.A. Weitz, Valve-based flow focusing for drop formation. Appl. Phys. Lett. 94, 023503 (2009)CrossRefGoogle Scholar
  3. A.R. Abate, J.J. Agresti, D.A. Weitz, Microfluidic sorting with high-speed single-layer membrane valves. Appl. Phys. Lett. 96, 203509 (2010)CrossRefGoogle Scholar
  4. A. Alrifaiy, O.A. Lindahl, K. Ramser, Polymer-based microfluidic devices for pharmacy, biology and tissue engineering. Polymers 4, 1349–1398 (2012)CrossRefGoogle Scholar
  5. H. Andersson, D.B.A. Van, Microfabrication and microfluidics for tissue engineering: State of the art and future opportunities. Lab Chip 4, 98–103 (2004)CrossRefGoogle Scholar
  6. J.Z. Chen, A.A. Darhuber, S.M. Troian, S. Wagner, Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation. Lab Chip 4, 473–480 (2004)CrossRefGoogle Scholar
  7. P.S. Dittrich, A. Manz, Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov. 5, 210 (2006)CrossRefGoogle Scholar
  8. A.Y. Fu, H.P. Chou, C. Spence, F.H. Arnold, S.R. Quake, An integrated microfabricated cell sorter. Anal. Chem. 74, 2451–2457 (2002)CrossRefGoogle Scholar
  9. A.M. Ganan-Calvo, J.M. Montanero, L. Martin-Banderas, M. Flores-Mosquera, Building functional materials for health care and pharmacy from microfluidic principles and flow focusing. Adv. Drug Deliv. Rev. 65, 1447–1469 (2013)CrossRefGoogle Scholar
  10. D. Huh, W. Gu, Y. Kamotani, J.B. Grotberg, S. Takayama, Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26, R73–R98 (2005)CrossRefGoogle Scholar
  11. W.W. Jeong, C. Kim, One-step method for monodisperse microbiogels by glass capillary microfluidics. Colloids Surf. A Physicochem. Eng. Asp. 384, 268–273 (2011)CrossRefGoogle Scholar
  12. J.-W. Jeong, J.G. Mccall, G. Shin, Y. Zhang, R. Al-Hasani, M. Kim, S. Li, J.Y. Sim, K.-I. Jang, Y. Shi, D.Y. Hong, Y. Liu, G.P. Schmitz, L. Xia, Z. He, P. Gamble, W.Z. Ray, Y. Huang, M.R. Bruchas, J.A. Rogers, Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015)CrossRefGoogle Scholar
  13. T.B. Jones, M. Gunji, M. Washizu, M.J. Feldman, Dielectrophoretic liquid actuation and nanodroplet formation. J. Appl. Phys. 89, 1441–1448 (2001)CrossRefGoogle Scholar
  14. P. Mach, T. Krupenkin, S. Yang, J.A. Rogers, Dynamic tuning of optical waveguides with electrowetting pumps and recirculating fluid channels. Appl. Phys. Lett. 81, 202–204 (2002)CrossRefGoogle Scholar
  15. S. Metz, A. Bertsch, D. Bertrand, P. Renaud, Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens. Bioelectron. 19, 1309–1318 (2004)CrossRefGoogle Scholar
  16. M.R.D. Saint Vincent, R. Wunenburger, J.-P. Delville, Laser switching and sorting for high speed digital microfluidics. Appl. Phys. Lett. 92, 154105 (2008)CrossRefGoogle Scholar
  17. W.F. Sewell, J.T. Borenstein, Z. Chen, J. Fiering, O. Handzel, M. Holmboe, E.S. Kim, S.G. Kujawa, M.J. Mckenna, M.M. Mescher, Development of a microfluidics-based intracochlear drug delivery device. Audiol. Neuro Otol. 14, 411–422 (2009)CrossRefGoogle Scholar
  18. S.K. Sia, G.M. Whitesides, Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576 (2003)CrossRefGoogle Scholar
  19. H.A. Stone, A.D. Stroock, A. Ajdari, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)CrossRefGoogle Scholar
  20. S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Droplet microfluidics. Lab Chip 8, 198–220 (2008)CrossRefGoogle Scholar
  21. C.-H. Tsai, C.-H. Lin, L.-M. Fu, H.-C. Chen, High-performance microfluidic rectifier based on sudden expansion channel with embedded block structure. Biomicrofluidics 6, 024108 (2012)CrossRefGoogle Scholar
  22. T.-H. Wu, L. Gao, Y. Chen, K. Wei, P.-Y. Chiou, Pulsed laser triggered high speed microfluidic switch. Appl. Phys. Lett. 93, 144102 (2008)CrossRefGoogle Scholar
  23. Y. Xia, J. Si, Z. Li, Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens. Bioelectron. 77, 774–789 (2016)CrossRefGoogle Scholar
  24. B. Ziaie, A. Baldi, M. Lei, Y.D. Gu, R.A. Siegel, Hard and soft micromachining for BioMEMS: Review of techniques and examples of applications in microfluidics and drug delivery. Adv. Drug Deliv. Rev. 56, 145–172 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics & AstronauticsNanjingChina
  2. 2.College of Aerospace EngineeringChongqing UniversityChongqingChina

Personalised recommendations