Biomedical Microdevices

, 20:102 | Cite as

Microfluidic Device for Cell Trapping with Carbon Electrodes Using Dielectrophoresis

  • Paridhi PuriEmail author
  • Vijay Kumar
  • S. U. Belgamwar
  • N. N. Sharma


Dielectrophoresis (DEP) devices have proven to be one of the most promising tools to transport, accumulate and sort various cells and particles. The major challenge in the development of DEP devices is the high cost, low yield using Microelectromechanical systems (MEMS). In this paper, we demonstrate a facile, low-cost, and high-throughput method of constructing continuous-flow DEP devices using screen-printing technology. Much literature has concluded that the use of carbon electrodes provides more cost effective and more durable DEP devices than metal electrodes. More efficient devices not only need to be constructed from a low cost material but also from an inexpensive fabrication technique. In this study, we used yeast cells as model cells to perform a comparative study on trapping efficiency of carbon and gold electrode DEP devices. We have proposed, the sealing of carbon DEP device with glass, instead of PDMS, using adhesive bonding technique which not only reduce the leakage problem but also increases the device performance. We also report the biocompatibility analysis of carbon paste and the results indicates its usefulness in eventual studies involving carbon-MEMS devices.


Dielectrophoresis Screen Printing Carbon Electrodes Cell Trapping 



The authors would like to acknowledge CeNSE IISC, Bangalore and Director, SCL Mohali for allowing us to avail the fabrication facility, Dept. of Biological science, BITS, Pilani for extending their help in cell culturing, which has led to the completion of this work.


  1. S. Agarwal, A. Sebastian, L.M. Forrester, G.H. Markx, Formation of embryoid bodies using dielectrophoresis. Biomicrofluidics 6(2), 24101 (2012)CrossRefGoogle Scholar
  2. F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R.C. Gascoyne, Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. 92(3), 860–864 (1995)CrossRefGoogle Scholar
  3. M. Blazewicz, Carbon materials in the treatment of soft and hard tissue injuries. Eur. cell. Mater. 2, 21–29 (2001)Google Scholar
  4. J.Y. Chan, A.B.A. Kayani, M.A.M. Ali, C.K. Kok, B.Y. Majlis, S.L.L. Hoe, M. Marzuki, A.S.B. Khoo, K. Ostrikov, M.A. Rahman, S. Sriram, Dielectrophoresis-based microfluidic platforms for cancer diagnostics. Biomicrofluidics 12(1), 011503 (2018)CrossRefGoogle Scholar
  5. P.R.C. Gascoyne, X. Wang, Y. Huang, F.F. Becker, Dielectrophoretic Separation of Cancer Cells from Blood. IEEE Trans. Ind. Appl. 33(3), 670–678 (1997)CrossRefGoogle Scholar
  6. W.A. Germishuizen, C. Walti, R. Wirtz, M.B. Johnston, M. Pepper, A.G. Davies, A.P.J. Middelberg, Selective dielectrophoretic manipulation of surface-immobilized DNA molecules. Nanotechnology 14(8), 896–902 (2003)CrossRefGoogle Scholar
  7. N.G. Green, H. Morgan, Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces. J. Phys. D. Appl. Phys. 31(7), L25 (1998)CrossRefGoogle Scholar
  8. M.P. Hughes, H. Morgan, F.J. Rixon, J.P.H. Burt, R. Pethig, Manipulation of herpes simplex virus type 1 by dielectrophoresis. Biochim. Biophys. Acta Gen. Subj. 1425(1), 119–126 (1998)CrossRefGoogle Scholar
  9. M.D.C. Jaramillo, E. Torrents, R. Martínez-Duarte, M. Madou, A. Juarez, On-line separation of bacterial cells by carbon-electrode dielectrophoresis. Electrophoresis 31(17), 2921–2928 (2010)CrossRefGoogle Scholar
  10. K. Kinoshita, Carbon: electrochemical and physicochemical propertie, Wiley, (1998)Google Scholar
  11. W.V. Kotlensky, H.E. Martens, Tensile properties of glassy carbon to 2900°C. Nature 06, 1276–1247 (1965)Google Scholar
  12. M. Li, S. Li, W. Cao, W. Li, W. Wen, G. Alici, Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis. J. Micromech. Microeng. 22(9), 095001–095008 (2012)CrossRefGoogle Scholar
  13. X. Lin, J. Yao, H. Dong, X. Cao, Effective Cell and Particle Sorting and Separation in Screen-Printed Continuous-Flow Microfluidic Devices with 3D Sidewall Electrodes. Ind. Eng. Chem. Res. 55(51), 13085–13093 (2016)CrossRefGoogle Scholar
  14. M. Madou, S. Sharma, Micro and nano patterning of carbon electrodes for bioMEMS, Bioinspired. Bioimmim. Nanobiomaterials. 1(4), 252–265 (2012)CrossRefGoogle Scholar
  15. R. Martinez-Duarte, Carbon-electrode Dielectrophoresis for Bioparticle Manipulation. ECS Trans. 61(7), 11–22 (2014)CrossRefGoogle Scholar
  16. R. Martinez-Duarte, J. Andrade-Roman, S. Martinez, M. Madou, A High Throughput Multi-Stage, Multi-Frequency Filter and Separation Device Based on Carbon Dielectrophoresis. NSTI-Nanotech. 3, 316–319 (2008)Google Scholar
  17. R. Martinez-Duarte, R.A. Gorkin, K. Abi-Samra, M.J. Madou, The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip 10(8), 1030–1043 (2010)CrossRefGoogle Scholar
  18. R. Martinez-Duarte, P. Renaud, M.J. Madou, A novel approach to dielectrophoresis using carbon electrodes. Electrophoresis 32(17), 2385–2392 (2011)Google Scholar
  19. K.E. Mccloskey, J.J. Chalmers, M. Zborowski, Magnetic Cell Separation : Characterization of Magnetophoretic Mobility. Anal. Chem. 75(24), 6868–6874 (2003)CrossRefGoogle Scholar
  20. A.R. Minerick, R. Zhou, P. Takhistov, H.C. Chang, Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis 24(21), 3703–3717 (2003)CrossRefGoogle Scholar
  21. H. Morgan, M.P. Hughes, N.G. Green, Separation of submicron bioparticles by dielectrophoresis. Biophys. J. 77(1), 516–525 (1999)CrossRefGoogle Scholar
  22. E. Peiner, A. Tibrewala, R. Bandorf, L. Holger, L. Doering, W. Limmer, Diamond-like carbon for MEMS. J. Micromech. Microeng. 17(7), S83–S90 (2007)CrossRefGoogle Scholar
  23. R. Pethig, Y. Huang, X. Wang, J.P.H. Burt, Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes. J. Phys. D. Appl. Phys. 25(5), 881–888 (1992)CrossRefGoogle Scholar
  24. O. Pilloni, J.L. Benitez Benitez, L.F. Olguin, C.A.P. Morales, L.O. Ramos, Micro Device for Bio-Particle Positioning in a 3D space based on Carbon MEMS and Dielectrophoretic Forces. ECS Trans. 72(31), 17–24 (2016)CrossRefGoogle Scholar
  25. P. Puri, V Kumar, M Ananthasubramanian, N.N Sharma, ISSS 2017, International Conf. on Smart Materials Structures and Systems, IISc, Bangalore, 5-7 July, (2017)Google Scholar
  26. C. Qian, H. Huang, L. Chen, X. Li, Z. Ge, T. Chen, Z. Yang, L. Sun, Dielectrophoresis for bioparticle manipulation. Int. J. Mol. Sci. 15(10), 18281–18309 (2014)CrossRefGoogle Scholar
  27. Q. Ramadan, V. Samper, D. Poenar, Z. Liang, C. Yu, T.M. Lim, Simultaneous cell lysis and bead trapping in a continuous flow microfluidic device. Sensors Actuators B Chem. 113(2), 944–955 (2006)CrossRefGoogle Scholar
  28. T. Ryll, G. Dutina, A. Reyes, J. Gunson, L. Krummen, T. Etcheverry, Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: characterization of separation efficiency and impact of perfusion on product quality. Biotechnol. Bioeng. 9(4), 440–449 (2000)CrossRefGoogle Scholar
  29. A.C. Sabuncu, J.A. Liu, S.J. Beebe, A. Beskok, Dielectrophoretic separation of mouse melanoma clones. Biomicrofluidics 4(2), 21101 (2010)CrossRefGoogle Scholar
  30. J. Sullivan, T. Friedmann, K. Hjort, Diamond and Amorphous carbon. MRS Bull. 26(4), 309–311 (2001)CrossRefGoogle Scholar
  31. G.T. Teixidor, R.A. Gorkin, P.P. Tripathi, G.S. Bisht, M. Kulkarni, T.K. Maiti, T.K. Bhattacharyya, J.R. Subramanian, A. Sharma, B.Y. Park, M. Madou, Carbon microelectromechanical systems as a substratum for cell growth. Biomed. Mater. 3(3), 034116–034124 (2008)CrossRefGoogle Scholar
  32. V.V. Tuchin, A clear vision for laser diagnostics (review). IEEE J. Sel. Top. Quantum Electron. 13(6), 1621–1628 (2007)CrossRefGoogle Scholar
  33. H. Xu, K. Malladi, C. Wang, L. Kulinsky, M. Song, M. Madou, Carbon post-microarrays for glucose sensors. Biosens. Bioelectron. 23(11), 1637–1644 (2008)CrossRefGoogle Scholar
  34. S. Yamada, H. Sato, Some physical properties of glassy carbon. Nature 193, 261–262 (1962)CrossRefGoogle Scholar
  35. F. Yang, X. Yang, H. Jiang, P. Bulkhaults, P. Woods, Dielectrophoretic separation of colorectal cancer cells. Biomicrofluidics 4(1), 13204 (2010)CrossRefGoogle Scholar
  36. J. Zhu, X. Xuan, Particle electrophoresis and dielectrophoresis in curved microchannels. J. Colloid Interface Sci. 340(2), 285–290 (2009)CrossRefGoogle Scholar
  37. J. Zhu, X. Xuan, Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels. Biomicrofluidics 5(2), 024111–024123 (2011)CrossRefGoogle Scholar
  38. K. Zhu, A.S. Kaprelyants, E.G. Salina, G.H. Markx, Separation by dielectrophoresis of dormant and nondormant bacterial cells of Mycobacterium smegmatis. Biomicrofluidics 4(2), 22809 (2010a)CrossRefGoogle Scholar
  39. J. Zhu, T.R.J. Tzeng, X. Xuan, Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis 31(8), 1382–1388 (2010b)CrossRefGoogle Scholar
  40. H. Zhu, X. Lin, Y. Su, H. Dong, J. Wu, Screen-printed microfluidic dielectrophoresis chip for cell separation, Biosens. Bioelectron. Biosens. Bioelectron. 63, 371–378 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringBirla Institute of Technology and SciencePilaniIndia
  2. 2.Semiconductor LaboratoryMohaliIndia
  3. 3.Department of Mechanical EngineeringManipal UniversityJaipurIndia

Personalised recommendations