Biomedical Microdevices

, 20:98 | Cite as

PDMS-free microfluidic cell culture with integrated gas supply through a porous membrane of anodized aluminum oxide

  • Frank BungeEmail author
  • Sander van den Driesche
  • Michael J. Vellekoop


Microfluidic cell cultures are often used in academic research but only rarely in pharmaceutical research because of unsuitable designs, inappropriate choice of materials or incompatibility with standard equipment. In particular, microfluidic cell cultures to control the gaseous microenvironment rely on PDMS despite its disadvantages. We present a novel concept for such a cell culture device that addresses these issues and is made out of hard materials instead of PDMS. Our device contains two microfluidic chambers that are separated by a porous membrane of anodized aluminum oxide. Because of the small pore sizes but high porosity, this design allows a gas supply from one chamber to the other while leakage of the medium is avoided. Furthermore, the cells can be cultured directly on the membrane which induces the same advantageous cell response as cultivation on very soft materials. Furthermore, the chip, made out of silicon and glass, is fabricated with clean-room technologies and thus allows mass production. The interfaces to the outer world are small reservoirs which are accessible with conventional pipettes so that the setup does not require any pump. The fabricated chip is characterized regarding its diffusion characteristics. HaCaT-cells are cultivated successfully up to 14 days inside the chip but can be also removed for further processes. The presented chip is a step to bring cell cultivation with controlled gas supply from academic to industrial applications.


Lab-on-a-Chip Anodized aluminum oxide Microfluidics Organs-on-a-Chip Porous membrane Cell culture 



This work is a part of the research project “LifeChip”, which is supported by the German Federal Government’s and Federal States’ Excellence Initiative in the framework of the institutional strategy of the University of Bremen, Germany. The authors would like to thank the technical staff of our institute and in particular Melanie Kirsch, Eileen Ritter, André Bödecker and Christian Habben for their kind support and fruitful discussions. Special thanks also belong to Arlo Radtke and Gazanfer Belge for providing the HaCaT-cells and for their kind support during the viability tests.


  1. H.E. Abaci, R. Devendra, Q. Smith, S. Gerecht, G. Drazer, Design and development of microbioreactors for long-term cell culture in controlled oxygen microenvironments. Biomed. Microdevices 14(1), 145–152 (2012). CrossRefGoogle Scholar
  2. H. Andersson, A. van den Berg, Microfluidic devices for cellomics: A review. Sensors Actuators B Chem. 92(3), 315–325 (2003). CrossRefGoogle Scholar
  3. I. Barbulovic-Nad, S.H. Au, A.R. Wheeler, A microfluidic platform for complete mammalian cell culture. Lab Chip 10, 1536–1542 (2010). CrossRefGoogle Scholar
  4. E. Berthier, E.W.K. Young, D. Beebe, Engineers are from PDMS-land, biologists are from Polystyrenia. Lab Chip 12, 1224 (2012). CrossRefGoogle Scholar
  5. D. Brüggemann, Nanoporous aluminium oxide membranes as cell interfaces. J. Nanomater. 2013, 1–18 (2013). CrossRefGoogle Scholar
  6. F. Bunge, S. van den Driesche, M.J. Vellekoop, Microfluidic platform for the long-term on-chip cultivation of mammalian cells for lab-on-a-chip applications. Sensors 17(7), 1603 (2017). CrossRefGoogle Scholar
  7. F. Bunge, C. Habben, S. van den Driesche, M. J. Vellekoop. Integration and characterization of nanoporous aluminium oxide membranes in microfluidic chips. Proceeding of IEEE MEMS Conference. (2018).
  8. S.P. Cadogan, G.C. Maitland, J.P. Martin Trusler, Diffusion coefficients of CO2 and N2 in water at temperatures between 298.15 K and 423.15 K at pressures up to 45 MPa, ACS. J. Chem. Eng. Data 59, 519–525 (2014). CrossRefGoogle Scholar
  9. S.M. Casillo, A.P. Peredo, S.J. Perry, H.H. Chung, T.R. Gaborski, Membrane pore spacing can modulate endothelial cell – Substrate and cell- cell interactions. ACS Biomater Sci. Eng. 3, 243–248 (2017). CrossRefGoogle Scholar
  10. S. Chittiboyina, R. Rahimi, F. Atrian, M. Ochoa, B. Ziaie, S.A. Lelièvre, Gradient-on-a-Chip with reactive oxygen species reveals thresholds in the nucleus response of Cancer cells depending on the matrix environment. ACS Biomater Sci. Eng. 4, 432–445 (2018). CrossRefGoogle Scholar
  11. D.T. Chiu, A.J. deMello, D. Di Carlo, P.S. Doyle, C. Hansen, R.M. Maceiczyk, R.C.R. Wootton, Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2(2), 201–223 (2017). CrossRefGoogle Scholar
  12. C.A. Cook, Y. Liu, J. Lu, N. Chen, Y. Fong, Y. Tai. Gas perfusable microfabricated membranes for high-density cell culture. Proceedings of IEEE MEMS Conference. (2017).
  13. T.E. de Groot, K.S. Veserat, E. Berthier, D.J. Beebe, A.B. Theberge, Surface-tension driven open microfluidic platform for hanging droplet culture. Lab Chip 16, 334 (2016). CrossRefGoogle Scholar
  14. S. Driesche, F. Lucklum, F. Bunge, M.J. Vellekoop, 3D printing solutions for microfluidic chip-to-world connections. Micromachines 9(2), 71 (2018). CrossRefGoogle Scholar
  15. T. Frisk, S. Rydholm, H. Andersson, G. Stemme, H. Brismar, A concept for miniaturized 3-d cell culture using an extracellular matrix gel. ELECTROPHORESIS 26(24), 4751–4758 (2005). CrossRefGoogle Scholar
  16. A.M.M. Jani, D. Losic, N.H. Voelcker, Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications. Prog. Mater. Sci. 58(5), 636–704 (2013). CrossRefGoogle Scholar
  17. M. Jarvis, M. Arnold, J. Ott, K. Pant, B. Prabhakarpandian, S. Mitragotri, Microfluidic co-culture devices to assess penetration of nanoparticles into cancer cell mass. Bioengineering & Translational Medicine 2, 268–277 (2017). CrossRefGoogle Scholar
  18. J.S. Jeon, S. Chung, R.D. Kamm, J.L. Charest, Hot embossing for fabrication of a microfluidic 3D cell culture platform. Biomed. Microdevices 13, 325–333 (2011). CrossRefGoogle Scholar
  19. K.F. Lei, H. Tseng, C. Lee, N. Tsang, Quantitative study of cell invasion process under extracellular stimulation of cytokine in a microfluidic device. Sci. Rep. 6(1), 25557 (2016). CrossRefGoogle Scholar
  20. K.F. Lei, C.-H. Chang, M.-J. Chen, Paper/PMMA hybrid 3D cell culture microfluidic platform for the study of cellular crosstalk. ACS Appl. Mater. Interfaces 9, 13092–13101 (2017). CrossRefGoogle Scholar
  21. B. Mosadegh, M.R. Lockett, K.T. Minn, K.A. Simon, K. Gilbert, S. Hillier, D. Newsome, H. Li, A.B. Hall, D.M. Boucher, B.K. Eustace, G.M. Whitesides, A paper-based invasion assay: Assessing chemotaxis of cancer cells in gradients of oxygen. Biomaterials 52, 262–271 (2015). CrossRefGoogle Scholar
  22. C.J. Ochs, J. Kasuya, A. Pavesi, R.D. Kamm, Oxygen levels in thermoplastic microfluidic devices during cell culture. Lab Chip 14, 459 (2014). CrossRefGoogle Scholar
  23. K.J. Regehr, M. Domenech, J.T. Koepsel, K.C. Carver, S.J. Ellison-Zelski, W.L. Murphy, L.A. Schuler, E.T. Alarid, D.J. Beebe, Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9, 2132 (2009). CrossRefGoogle Scholar
  24. E. Sackmann, A. Fulton, D. Beebe, The present and future role in microfluidics in biomedical research. Nature 507, 181–189 (2014). CrossRefGoogle Scholar
  25. P. Skafte-Pedersen, M. Hemmingsen, D. Sabourin, F. S. Blaga, H. Bruus, M. Dufva. A self-contained, programmable microfluidic cell culture system with real-time microscopy access. Biomed. Microdevices, 2011, 14, 385–399. (2012)
  26. A. Takano, M. Tanaka, N. Futai, On-chip multi-gas incubation for microfluidic cell cultures under hypoxia. Biomicrofluidics 8, 061101 (2014). CrossRefGoogle Scholar
  27. J. Theobald, A. Ghanem, P. Wallisch, A.A. Banaeiyan, M.A. Andrade-Navarro, K. Taskova, M. Haltmeier, A. Kurtz, H. Becker, S. Reuter, R. Mrowka, X. Cheng, S. Wölfl, Liver-kidney-on-Chip to study toxicity of drug metabolites. ACS Biomater Sci. Eng. 4, 78–89 (2018). CrossRefGoogle Scholar
  28. A. Thormann, N. Teuscher, M. Pfannmöller, U. Rothe, A. Heilmann, Nanoporous aluminum oxide membranes for filtration and biofunctionalization. Small 3(6), 1032–1040 (2007). CrossRefGoogle Scholar
  29. L.R. Volpatti, A.K. Yetisen, Commercialization of microfluidic devices. Trends Biotechnol. 32, 347–350 (2014). CrossRefGoogle Scholar
  30. M. Wu, S. Huang, G. Lee, Microfluidic cell culture systems for drug research. Lab Chip 10, 939–956 (2010). CrossRefGoogle Scholar
  31. H.M. Wu, T.A. Lee, P.L. Ko, H.J. Chiang, C.C. Peng, Y.C. Tung, Review of microfluidic cell culture devices for the control of gaseous microenvironments in vitro. J. Micromech. Microeng. 28, 043001 (2018). CrossRefGoogle Scholar
  32. T. Yotsuyanagi, T. Ohkubo, T. Ohhashi, K. Ikeda, Calcium induced gelation of alginic acid and pH-sensitive reswelling of dried gels. Chem. Pharm. Bull. 35(4), 1555–1563 (1987). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Microsensors, -actuators and -systems (IMSAS)University of BremenBremenGermany
  2. 2.Microsystems Center Bremen (MCB)BremenGermany

Personalised recommendations