Advertisement

Biomedical Microdevices

, 20:71 | Cite as

Porous silicon-poly(ε-caprolactone) film composites: evaluation of drug release and degradation behavior

  • Nelli K. Bodiford
  • Steven J. P. McInnes
  • Nicolas H. Voelcker
  • Jeffery L. Coffer
Article
  • 81 Downloads

Abstract

This work focuses on an evaluation of novel composites of porous silicon (pSi) with the biocompatible polymer ε-polycaprolactone (PCL) for drug delivery and tissue engineering applications. The degradation behavior of the composites in terms of their morphology along with the effect of pSi on polymer degradation was monitored. PSi particles loaded with the drug camptothecin (CPT) were physically embedded into PCL films formed from electrospun PCL fiber sheets. PSi/PCL composites revealed a release profile of CPT (monitored via fluorescence spectroscopy) in accordance with the Higuchi release model, with significantly lower burst release percentage compared to pSi microparticles alone. Degradation studies of the composites, using gravimetric analysis, differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM), carried out in phosphate-buffered saline (PBS) under simulated physiological conditions, indicated a modest mass loss (15%) over 5 weeks due to pSi dissolution and minor polymer hydrolysis. DSC results showed that, relative to PCL-only controls, pSi suppressed crystallization of the polymer film during PBS exposure. This suppression affects the evolution of surface morphology during this exposure that, in turn, influences the degradation behavior of the polymer. The implications of the above properties of these composites as a possible therapeutic device are discussed.

Keywords

Porous silicon Polycaprolactone Camptothecin Drug delivery Tissue engineering 

Notes

Acknowledgements

Financial support of this research by the Robert A. Welch Foundation is gratefully acknowledged (Grant P-1212). This work was performed in part at the Melbourne Centre for Nanofabrication (MCN) in the Victorian Node of the Australian National Fabrication Facility (ANFF).

References

  1. S.A.M. Ali, S.P. Zhong, P.J. Doherty, D.F. Williams, Biomaterials 14, 648–656 (1993)CrossRefGoogle Scholar
  2. S.H.C. Anderson, H. Elliott, D.J. Wallis, L.T. Canham, J.J. Powell, Phys. Status Solidi A 197, 331–335 (2003)CrossRefGoogle Scholar
  3. L.M. Bimbo, E. Makila, T. Laaksonen, V.P. Lehto, J. Salonen, J. Hirvonen, H.A. Santos, Biomaterials 32, 2625–2633 (2011)CrossRefGoogle Scholar
  4. L.T. Canham, Adv. Mater. 7, 1033–1037 (1995)CrossRefGoogle Scholar
  5. I. Castilla-Cortazar, J. Mas-Estelles, J.M. Meseguer-Duenas, J.L.E. Ivirico, B. Mari, A. Vidaurre, Polym. Degrad. Stab. 97, 1241–1248 (2012)CrossRefGoogle Scholar
  6. D.Y. Chan, A.G. Sega, J.Y. Lee, T. Gao, F. Cunin, F. Di Renzo, M.J. Sailor, Inorg. Chim. Acta 422, 21–29 (2014)CrossRefGoogle Scholar
  7. C. Chiappini, X.W. Liu, J.R. Fakhoury, M. Ferrari, Adv. Funct. Mater. 20, 2231–2239 (2010)CrossRefGoogle Scholar
  8. P. Costa, J. Manuel, S. Lobo, Eur. J. Pharm. Sci. 13, 123–133 (2001)CrossRefGoogle Scholar
  9. V. Crescenzi, G. Manzini, G. Calzolari, C. Borri, Eur. Polym. J. 8, 449–463 (1972)CrossRefGoogle Scholar
  10. G.W. Ehrenstein, in Polymeric Materials: Structure-Properties-Applications, ed. by G.W. Ehrenstein (Hanser, Munich, 2001), p. 167–209Google Scholar
  11. D.M. Fan, A. Loni, L.T. Canham, J.L. Coffer, Phys. Status Solidi A 206, 1322–1325 (2009)CrossRefGoogle Scholar
  12. D.M. Fan, G.R. Akkaraju, E.F. Couch, L.T. Canham, J.L. Coffer, Nanoscale 3, 354–361 (2011)CrossRefGoogle Scholar
  13. D.M. Fan, E. De Rosa, M.B. Murphy, Y. Peng, C.A. Smid, C. Chiappini, X.W. Liu, P. Simmons, B.K. Weiner, M. Ferrari, E. Tasciotti, Adv. Funct. Mater. 22, 282–293 (2012)CrossRefGoogle Scholar
  14. N. Ganesh, R. Jayakumar, M. Koyakutty, U. Mony, S.V. Nair, Tissue Eng. Part A 18, 1867–1881 (2012)CrossRefGoogle Scholar
  15. T. Higuchi, J. Pharm. Sci. 50, 874–875 (1961)CrossRefGoogle Scholar
  16. T. Higuchi, J. Pharm. Sci. 52, 1145–1149 (1963)CrossRefGoogle Scholar
  17. A.W. Hixson, J.H. Crowell, Ind. Eng. Chem. 23, 1002–1009 (1931)CrossRefGoogle Scholar
  18. Y.D. Irani, Y. Tian, M.J. Wang, S. Klebe, S.J. McInnes, N.H. Voelcker, J.L. Coffer, K.A. Williams, Exp. Eye Res. 139, 123–131 (2015)CrossRefGoogle Scholar
  19. S. Kashanian, F. Harding, Y. Irani, S. Klebe, K. Marshall, A. Loni, L. Canham, D.M. Fan, K.A. Williams, N.H. Voelcker, J.L. Coffer, Acta Biomater. 6, 3566–3572 (2010)CrossRefGoogle Scholar
  20. M. Labet, W. Thielemans, Chem. Soc. Rev. 38, 3484–3504 (2009)CrossRefGoogle Scholar
  21. A. Loni, T. Defforge, E. Caffull, G. Gautier, L.T. Canham, Microporous Mesoporous Mater. 213, 188–191 (2015)CrossRefGoogle Scholar
  22. N. Massad-Ivanir, Y. Mirsky, A. Nahor, E. Edrei, L.M. Bonanno-Young, N. Ben Dov, A. Sa'ar, E. Segal, Analyst 139, 3885–3894 (2014)CrossRefGoogle Scholar
  23. S.J.P. McInnes, Y. Irani, K.A. Williams, N.H. Voelcker, Nanomedicine-UK 7, 995–1016 (2012)CrossRefGoogle Scholar
  24. M. Mehrasa, M.A. Asadollahi, B. Nasri-Nasrabadi, K. Ghaedi, H. Salehi, A. Dolatshahi-Pirouz, A. Arpanaei, Mat. Sci. Eng. C Mater. 66, 25–32 (2016)CrossRefGoogle Scholar
  25. J.M. Meseguer-Duenas, J. Mas-Estelles, I. Castilla-Cortazar, J.L.E. Ivirico, A. Vidaurre, J. Mater. Sci. Mater. Med. 22, 11–18 (2011)CrossRefGoogle Scholar
  26. P. Mukherjee, M.A. Whitehead, R.A. Senter, D.M. Fan, J.L. Coffer, L.T. Canham, Biomed. Microdevices 8, 9–15 (2006)CrossRefGoogle Scholar
  27. H. Ouyang, M. Christophersen, P.M. Fauchet, Phys. Status Solidi A 202, 1396–1401 (2005)CrossRefGoogle Scholar
  28. C. Pacholski, Sensors (Basel) 13, 4694–4713 (2013)CrossRefGoogle Scholar
  29. C.G. Pitt, F.I. Chasalow, Y.M. Hibionada, D.M. Klimas, A. Schindler, Appl. Polym. Sci. 26, 3779–3787 (1981)CrossRefGoogle Scholar
  30. G. Rong, A. Najmaie, J.E. Sipe, S.M. Weiss, Biosens. Bioelectron. 23, 1572–1576 (2008)CrossRefGoogle Scholar
  31. M.J. Sailor, in Handbook of Porous Silicon, ed. by L.T. Canham, (Springer, New York, 2014), p. 355–380Google Scholar
  32. J. P. Vacanti, C.A. Vacanti, in Principles of Tissue Engineering, ed. by R. Lanza, R. Langer, (Elsevier Science, Amsterdam, 2013), p. 3–9Google Scholar
  33. M.E. Wall, M.C. Wani, C.E. Cook, K.H. Palmer, A.T. Mcphail, G.A. Sim, J. Am, Chem. Soc. 88, 3888–3890 (1966)CrossRefGoogle Scholar
  34. M.J. Wang, P.S. Hartman, A. Loni, L.T. Canham, N. Bodiford, J.L. Coffer, Langmuir 31, 6179–6185 (2015a)CrossRefGoogle Scholar
  35. C.F. Wang, M.P. Sarparanta, E.M. Makila, M.L.K. Hyvonen, P.M. Laakkonen, J.J. Salonen, J.T. Hirvonen, A.J. Airaksinen, H.A. Santos, Biomaterials 48, 108–118 (2015b)CrossRefGoogle Scholar
  36. M.A. Whitehead, D. Fan, G.R. Akkaraju, L.T. Canham, J.L. Coffer, J. Biomed. Mater. Res. A 83a, 225–234 (2007)CrossRefGoogle Scholar
  37. M.A. Whitehead, D. Fan, P. Mukherjee, G.R. Akkaraju, L.T. Canham, J.L. Coffer, Tissue Eng. Part A 14, 195–206 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryTexas Christian UniversityFort WorthUSA
  2. 2.University of South AustraliaAdelaideAustralia
  3. 3.Victorian Node of the Australian National Fabrication FacilityMelbourne Centre for NanofabricationClaytonAustralia
  4. 4.Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia
  5. 5.Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonAustralia

Personalised recommendations