Advertisement

Biomedical Microdevices

, 20:65 | Cite as

3D printing for preoperative planning and surgical training: a review

  • Anurup Ganguli
  • Gelson J. Pagan-Diaz
  • Lauren Grant
  • Caroline Cvetkovic
  • Mathew Bramlet
  • John Vozenilek
  • Thenkurussi Kesavadas
  • Rashid Bashir
Article
  • 71 Downloads
Part of the following topical collections:
  1. Biomedical Micro-Nanotechnologies toward Translation

Abstract

Surgeons typically rely on their past training and experiences as well as visual aids from medical imaging techniques such as magnetic resonance imaging (MRI) or computed tomography (CT) for the planning of surgical processes. Often, due to the anatomical complexity of the surgery site, two dimensional or virtual images are not sufficient to successfully convey the structural details. For such scenarios, a 3D printed model of the patient’s anatomy enables personalized preoperative planning. This paper reviews critical aspects of 3D printing for preoperative planning and surgical training, starting with an overview of the process-flow and 3D printing techniques, followed by their applications spanning across multiple organ systems in the human body. State of the art in these technologies are described along with a discussion of current limitations and future opportunities.

Keywords

Rapid prototyping Organ models Surgical training Preoperative planning 3D printing 

References

  1. P. Abdel-Sayed, L. Von Segesser, in Adv. Appl. Rapid Prototyp. Technol. Mod. Eng.. Rapid prototyping for training purposes in cardiovascular surgery (2011)Google Scholar
  2. P. Abdel-Sayed, M. Kalejs, L.K. von Segesser, A new training set-up for trans-apical aortic valve replacement. Interact. Cardiovasc. Thorac. Surg. 8, 599–601 (2009)CrossRefGoogle Scholar
  3. N. Adolphs, W. Liu, E. Keeve, B. Hoffmeister, Craniomaxillofacial surgery planning based on 3D models derived from Cone-Beam CT data. Comput. Aided Surg. 18(5–6), 101–108 (2013)CrossRefGoogle Scholar
  4. D.-G. Ahn, J.-Y. Lee, D.-Y. Yang, Rapid prototyping and reverse engineering application for orthopodeic surgery planning. J. Mech. Sci. Technol. 20(1), 19–28 (2006)CrossRefGoogle Scholar
  5. M. Akaike et al., Simulation-based medical education in clinical skills laboratory. J. Med. Invest. 59(1, 2), 28–35 (2012)CrossRefGoogle Scholar
  6. O. Al-Mefty, J.L. Fox, A. Rifai, R.R. Smith, A combined infratemporal and posterior fossa approach for the removal of giant glomus tumors and chondrosarcomas. Surg. Neurol. 28(6), 423–431 (Dec. 1987)CrossRefGoogle Scholar
  7. T. Andrew and H. Piggott, Growth arrest for progressive scoliosis. Combined anterior and posterior fusion of the convexity. J. Bone Jt. Surg. …, (1985)Google Scholar
  8. E. Angeli, D. Pacini, S. Martin-Suarez, A. Dell’Amore, R. Fattori, R. Di Bartolomeo, Stent repair of aortic perianastomotic leak after aortic arch and descending aorta replacement. Ital. Heart J. Off. J. Ital. Fed. Cardiol. 5(12), 951–953 (Dec. 2004)Google Scholar
  9. D. Bakhos, S. Velut, A. Robier, M. Al Zahrani, E. Lescanne, Three-dimensional modeling of the temporal bone for surgical training. Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol., 328–334 (2009)Google Scholar
  10. E. Berry et al., Preliminary experience with medical applications of rapid prototyping by selective laser sintering. Med. Eng. Phys. 19(1), 90–96 (1997)CrossRefGoogle Scholar
  11. E. Berry, A. Marsden, K.W. Dalgarno, D. Kessel, D.J. Scott, Flexible tubular replicas of abdominal aortic aneurysms. Proc. Inst. Mech. Eng. H J. Eng. Med. 216(3), 211–214 (2002)CrossRefGoogle Scholar
  12. Bertalanffy, The dorsolateral, suboccipital, transcondylar approach to the lower clivus and anterior portion of the craniocervical junction. Neurosurgery 29(6), 815–821 (1991)CrossRefGoogle Scholar
  13. J.S. Bill et al., Stereolithography in oral and maxillofacial operation planning. Int. J. Oral Maxillofac. Surg. 24(1), 98–103 (Feb. 1995)CrossRefGoogle Scholar
  14. G.A. Brown, K. Firoozbakhsh, T. a DeCoster, J.R. Reyna, M. Moneim, Rapid prototyping: the future of trauma surgery? J. Bone Joint Surg. Am. 85(A Suppl), 49–55 (2003)CrossRefGoogle Scholar
  15. R. Bryan, J. Rand, Revision total knee arthroplasty (Clin. Orthop, 1982)Google Scholar
  16. S. Bustamante, S. Bose, P. Bishop, R. Klatte, F. Norris, Novel application of rapid prototyping for simulation of bronchoscopic anatomy. J. Cardiothorac. Vasc. Anesth. 28(4), 1134–1137 (2014)CrossRefGoogle Scholar
  17. R.M. Carr, R.H. Mathog, Early and delayed repair of orbitozygomatic complex fractures. J. Oral Maxillofac. Surg. 55(3), 253–258 (Mar. 1997)CrossRefGoogle Scholar
  18. V. Chan, P. Zorlutuna, J.H. Jeong, H. Kong, R. Bashir, Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab. Chip 10(16), 2062–2070 (Aug. 2010)CrossRefGoogle Scholar
  19. C.L. Cheung, T. Looi, T.S. Lendvay, J.M. Drake, W.a. Farhat, Use of 3-dimensional printing technology and silicone modeling in surgical simulation: Development and face validation in pediatric laparoscopic pyeloplasty. J. Surg. Educ. 71(5), 762–767 (2014)CrossRefGoogle Scholar
  20. C. K. Chong, J. Brennan, T. V How, R. Edwards, G. L. Gilling-Smith, and P. L. Harris, “A prototype simulator for endovascular repair of abdominal aortic aneurysms.,” Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg., vol. 13, no. 3, pp. 330–333, 1997.Google Scholar
  21. A. Cohen, A. Laviv, P. Berman, R. Nashef, J. Abu-Tair, Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 108(5), 661–666 (2009)CrossRefGoogle Scholar
  22. J.J. Collins, S.F. Aranki, Management of mild aortic stenosis during coronary artery bypass graft surgery. J. Card. Surg. 9(s2), 145–147 (Mar. 1994)CrossRefGoogle Scholar
  23. J.P. Costello et al., Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education. World J. Pediatr. Congenit. Heart Surg. 5(3), 421–426 (2014)CrossRefGoogle Scholar
  24. J.P. Costello et al., Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 10(2), 185–190 (2015)CrossRefGoogle Scholar
  25. J. Cui, L. Chen, X. Guan, L. Ye, H. Wang, L. Liu, Surgical planning, three-dimensional model surgery and preshaped implants in treatment of bilateral craniomaxillofacial post-traumatic deformities. J. Oral Maxillofac. Surg. 72(6), 1138.e1–1138.e14 (2014)CrossRefGoogle Scholar
  26. L.L. Cunningham, M.J. Madsen, G. Peterson, Stereolithographic modeling technology applied to tumor resection. J. Oral Maxillofac. Surg. 63(6), 873–878 (2005)CrossRefGoogle Scholar
  27. P.S. D’Urso et al., Stereolithographic (SL) biomodelling in craniofacial surgery. Br. J. Plast. Surg. 51(7), 522–530 (Oct. 1998)CrossRefGoogle Scholar
  28. P.S. D’Urso et al., Custom cranioplasty using stereolithography and acrylic. Br. J. Plast. Surg. 53(3), 200–204 (Apr. 2000)CrossRefGoogle Scholar
  29. E. Debarre, P. Hivart, D. Baranski, P. Déprez, Speedy skeletal prototype production to help diagnosis in orthopaedic and trauma surgery. Methodology and examples of clinical applications. Orthop. Traumatol. Surg. Res. 98(5), 597–602 (2012)CrossRefGoogle Scholar
  30. R. Dhakshyani, Y. Nukman, N.A.A. Osman, A.M. Merican, J. George, Rapid prototyping medical models for dysplastic hip orthopaedic surgery. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 224(5), 769–776 (2010)CrossRefGoogle Scholar
  31. R. Dhakshyani, Y. Nukman, N.A. Abu Osman, Rapid prototyping models for dysplastic hip surgeries in Malaysia. Eur. J. Orthop. Surg. Traumatol. 22(1), 41–46 (2012)CrossRefGoogle Scholar
  32. B.O. Erbano et al., Rapid prototyping of three-dimensional biomodels as an adjuvant in the surgical planning for intracranial aneurysms. Acta Cirúrgica Bras. Soc. Bras. Para Desenvolv. Pesqui. Em Cir. 28(11), 756–761 (2013)Google Scholar
  33. X. Fan, H. Zhou, M. Lin, Y. Fu, J. Li, Late reconstruction of the complex orbital fractures with computer-aided design and computer-aided manufacturing technique. J. Craniofac. Surg. 18(3), 665–673 (2007)CrossRefGoogle Scholar
  34. M. Farina, J.F. Alexander, U. Thekkedath, M. Ferrari, A. Grattoni, Cell encapsulation: Overcoming barriers in cell transplantation in diabetes and beyond. Adv. Drug Deliv. Rev. (2018)Google Scholar
  35. S.F. Fighali et al., Early and late mortality of patients undergoing aortic valve replacement after previous coronary artery bypass graft surgery. Circulation 92(9), 163–168 (Nov. 1995)CrossRefGoogle Scholar
  36. U. Fisch, The infratemporal approach to glomus jugulare tumors. Neurochirurgie. 31(5), 367–376 (Jan. 1985)Google Scholar
  37. D.H. Frakes, M.J.T. Smith, J. Parks, S. Sharma, S.M. Fogel, A.P. Yoganathan, New techniques for the reconstruction of complex vascular anatomies from MRI images. J. Cardiovasc. Magn. Reson. Off. J. Soc. Cardiovasc. Magn. Reson. 7(2), 425–432 (2005)Google Scholar
  38. M. Frame, J.S. Huntley, Rapid prototyping in orthopaedic surgery: a user’s guide. ScientificWorldJournal 2012, 838575 (2012)CrossRefGoogle Scholar
  39. K. Futami, M. Nakada, M. Iwato, D. Kita, T. Miyamori, J. Yamashita, Simulation of clipping position for cerebral aneurysms using three-dimensional computed tomography angiography. Neurol. Med. Chir. (Tokyo) 44(1), 6–13 (Mar. 2004)CrossRefGoogle Scholar
  40. J. Gateno, M.E. Allen, J.F. Teichgraeber, M.L. Messersmith, An in vitro study of the accuracy of a new protocol for planning distraction osteogenesis of the mandible. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 58(9), 985–990; discussion 990–1 (2000)CrossRefGoogle Scholar
  41. J. Geerts et al., Functional magnetic resonance imaging for preoperative localisation of eloquent brain areas relative to brain tumours: clinical implementation in a regional hospital. JBR-BTR Organe Société R. Belge Radiol. SRBR Orgaan Van K. Belg. Ver. Voor Radiol. KBVR 90(4), 258–263 (Jan. 2007)Google Scholar
  42. K.K. Gnanalingham, V. Apostolopoulos, S. Barazi, K. O’Neill, The impact of the international subarachnoid aneurysm trial (ISAT) on the management of aneurysmal subarachnoid haemorrhage in a neurosurgical unit in the UK. Clin. Neurol. Neurosurg. 108(2), 117–123 (Feb. 2006)CrossRefGoogle Scholar
  43. G.F. Greil et al., Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin. Res. Cardiol. 96, 176–185 (2007)CrossRefGoogle Scholar
  44. J. Guarino, S. Tennyson, G. McCain, L. Bond, K. Shea, H. King, Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis. J. Pediatr. Orthop. 27(8), 955–960 (2007)CrossRefGoogle Scholar
  45. H.K. Hahn, W.S. Millar, O. Klinghammer, M.S. Durkin, P.K. Tulipano, H.-O. Peitgen, A reliable and efficient method for cerebral ventricular volumetry in pediatric neuroimaging. Methods Arch. 43(4), 376–382 (2004)Google Scholar
  46. H.M. Hidalgo, G.W. Romo, R.T.R. Estolano, Stereolithography: a method for planning the surgical correction of the hypertelorism. J. Craniofac. Surg., vol. 5, 20 (2009)Google Scholar
  47. J. Hirsch et al., An integrated functional magnetic resonance imaging procedure for preoperative mapping of cortical aread associated with tactile, motor, language, and visual functions. Neurosurgery 47(3), 711–722 (2000)Google Scholar
  48. J.I.. Hoffman, S. Kaplan, The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39(12), 1890–1900 (Jun. 2002)Google Scholar
  49. D.E. Holck, E.M. Boyd, J. Ng, R.O. Mauffray, Benefits of stereolithography in orbital reconstruction. Ophthalmology 106(6), 1214–1218 (1999)CrossRefGoogle Scholar
  50. C. Hurson, B.O.’.D. a Tansey, P. Nicholson, J. Rice, J. McElwain, Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 38(10), 1158–1162 (2007)CrossRefGoogle Scholar
  51. S. Jacobs, R. Grunert, F.W. Mohr, V. Falk, 3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact. Cardiovasc. Thorac. Surg. 7(1), 6–9 (2008)CrossRefGoogle Scholar
  52. A.D. Jatene, Left ventricular aneurysmectomy. Resection or reconstruction. J. Thorac. Cardiovasc. Surg. 89(3), 321–331 (Mar. 1985)Google Scholar
  53. J.F. John, R.E. Talbert, J.K. Taylor, W.L. Bargar, Use of acetabular models in planning complex acetabular reconstructions. J. Arthroplasty 10(5), 661–666 (Oct. 1995)CrossRefGoogle Scholar
  54. M. Kalejs, L.K. von Segesser, Rapid prototyping of compliant human aortic roots for assessment of valved stents. Interact. Cardiovasc. Thorac. Surg. 8, 182–186 (2009)CrossRefGoogle Scholar
  55. T. Kaminaga, T. Takeshita, I. Kimura, Role of magnetic resonance imaging for evaluation of tumors in the cardiac region. Eur. Radiol., vol. 13 Suppl 6, L1–L10 (Dec. 2003)Google Scholar
  56. B. Kavanagh, Cemented revision hip arthroplasty: results, Jt. Replace. Arthroplasty N. Y. Etc Churchill … 1991 Paperpile.Google Scholar
  57. C.J. Kellenberger, S.-J. Yoo, E.R.V. Büchel, Cardiovascular MR imaging in neonates and infants with congenital heart disease. Radiogr. Rev. Publ. Radiol. Soc. N. Am. Inc 27(1), 5–18 (2007)Google Scholar
  58. C. Kermer, a. Lindner, I. Friede, a. Wagner, W. Millesi, Preoperative stereolithographic model planning for primary reconstruction in craniomaxillofacial trauma surgery. J. Craniomaxillofac. Surg. 26(3), 136–139 (1998)CrossRefGoogle Scholar
  59. J. Kettenbach et al., Computer-based imaging and interventional MRI: applications for neurosurgery. Comput. Med. Imaging Graph. 23(5), 245–258 (1999)CrossRefGoogle Scholar
  60. M.S. Kim, A.R. Hansgen, O. Wink, R.A. Quaife, J.D. Carroll, Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 117(18), 2388–2394 (2008)CrossRefGoogle Scholar
  61. T. Kimura et al., Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery 65(4), 719–726 (2009)CrossRefGoogle Scholar
  62. K. Knox, C.W. Kerber, S. a Singel, M.J. Bailey, S.G. Imbesi, Rapid prototyping to create vascular replicas from CT scan data: making tools to teach, rehearse, and choose treatment strategies. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 65(1), 47–53 (2005)CrossRefGoogle Scholar
  63. M. Kozakiewicz et al., Clinical application of 3D pre-bent titanium implants for orbital floor fractures. J. Cranio-Maxillofac. Surg. 37(4), 229–234 (2009)CrossRefGoogle Scholar
  64. J.P. Kruth, Material incress manufacturing by rapid prototyping techniques. CIRP Ann. - Manuf. Technol. 40(2), 603–614 (1991)CrossRefGoogle Scholar
  65. P. Lachiewicz and O. Hussamy, Revision of the acetabulum without cement with use of the Harris-Galante porous-coated implant. Two to eight-year results. J. Bone Jt. Surg., (1994)Google Scholar
  66. R. Lazar and J. Hall, Simultaneous anterior and posterior hemivertebra excision. Clin. Orthop., (1999)Google Scholar
  67. G.M. Lemole, P.P. Banerjee, C. Luciano, S. Neckrysh, F.T. Charbel, Virtual reality in neurosurgical education. Neurosurgery 61(1), 142–149 (2007)CrossRefGoogle Scholar
  68. E.A. Longfield, T.M. Brickman, A. Jeyakumar, 3D printed pediatric temporal bone: a novel training model. Otol Neurotol, 793–795 (2015)Google Scholar
  69. E. Maravelakis, K. David, A. Antoniadis, A. Manios, N. Bilalis, Y. Papaharilaou, Reverse engineering techniques for cranioplasty: a case study. J. Med. Eng. Technol. 32(2), 115–121 (2008)CrossRefGoogle Scholar
  70. T. Mashiko et al., Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurg 83(3), 351–361 (2015)CrossRefGoogle Scholar
  71. B. Mavčič, B. Pompe, and V. Antolič, Mathematical estimation of stress distribution in normal and dysplastic human hips, J. …, (2002)Google Scholar
  72. M. McGurk, A.A. Amis, P. Potamianos, N.M. Goodger, Rapid prototyping techniques for anatomical modelling in medicine. Ann. R. Coll. Surg. Engl. 79(3), 169–174 (May 1997)Google Scholar
  73. S. Mohammadi et al., Reoperation for false aneurysm of the ascending aorta after its prosthetic replacement: surgical strategy. Ann. Thorac. Surg. 79(1), 147–152; discussion 152 (Jan. 2005)Google Scholar
  74. K. Mori, T. Yamamoto, K. Oyama, H. Ueno, Y. Nakao, K. Honma, Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note. Neurol. Med. Chir. (Tokyo) 48(12), 582–587; discussion 587–588 (2008)Google Scholar
  75. L. Moroni et al., Biofabrication strategies for 3D in vitro models and regenerative medicine, Nature Reviews Materials. 3(5), 21–37, (2018)Google Scholar
  76. S. Mottl-Link et al., Physical models aiding in complex congenital heart surgery. Ann. Thorac. Surg. 86(1), 273–277 (2008)CrossRefGoogle Scholar
  77. B. Mueller, D. Kochan, Laminated object manufacturing for rapid tooling and patternmaking in foundry industry. Comput. Ind. 39(1), 47–53 (1999)CrossRefGoogle Scholar
  78. A. Müller, K.G. Krishnan, E. Uhl, G. Mast, The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J. Craniofac. Surg. 14, 899–914 (2003)CrossRefGoogle Scholar
  79. M.C. Murphy et al., Surgical treatment of cardiac tumors: A 25-year experience☆. Ann. Thorac. Surg. 49(4), 612–618 (Apr. 1990)CrossRefGoogle Scholar
  80. S.F. Mustafa, P.L. Evans, A. Bocca, D.W. Patton, A.W. Sugar, P.W. Baxter, Customized titanium reconstruction of post-traumatic orbital wall defects: a review of 22 cases. Int. J. Oral Maxillofac. Surg. 40(12), 1357–1362 (2011)CrossRefGoogle Scholar
  81. E.M. Ngan et al., The rapid prototyping of anatomic models in pulmonary atresia. J. Thorac. Cardiovasc. Surg. 132(2), 264–269 (2006)CrossRefGoogle Scholar
  82. A.M. Noecker et al., Development of patient-specific three-dimensional pediatric cardiac models. ASAIO J. 52(3), 349–353 (2006)CrossRefGoogle Scholar
  83. M.K. O’Reilly et al., Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine. Anat. Sci. Educ. 00(2010), 1–9 (2015)Google Scholar
  84. J.A. Odell, C.J. Mullany, H.V. Schaff, T.A. Orszulak, R.C. Daly, J.J. Morris, Aortic valve replacement after previous coronary artery bypass grafting. Ann. Thorac. Surg. 62(5), 1424–1430 (Nov. 1996)CrossRefGoogle Scholar
  85. M. Oishi, M. Fukuda, N. Yajima, and K. Yoshida, Interactive presurgical simulation applying advanced 3D imaging and modeling techniques for skull base and deep tumors: Clinical article, J. Of, (2013).Google Scholar
  86. M. Oliveira et al., 3-D biomodelling technology for maxillofacial reconstruction. Mater. Sci. Eng. C 28(8), 1347–1351 (2008)CrossRefGoogle Scholar
  87. L.J. Olivieri, A. Krieger, Y.-H. Loke, D.S. Nath, P.C.W. Kim, C.A. Sable, Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. J. Am. Soc. Echocardiogr. 28(4), 392–397 (2015)CrossRefGoogle Scholar
  88. J.M. Otton et al., Left atrial appendage closure guided by personalized 3d-printed cardiac reconstruction. JACC Cardiovasc. Interv. 8(7), 1004–1006 (2015)CrossRefGoogle Scholar
  89. P. Ou, D.S. Celermajer, G. Calcagni, F. Brunelle, D. Bonnet, D. Sidi, Three-dimensional CT scanning: a new diagnostic modality in congenital heart disease. Heart 93(8), 908–913 (2007)CrossRefGoogle Scholar
  90. S.W. Park, J.W. Choi, K.S. Koh, T.S. Oh, Mirror-imaged rapid prototype skull model and pre-molded synthetic scaffold to achieve optimal orbital cavity reconstruction. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg., 1540–1553 (2015)Google Scholar
  91. J.Y. Park, G. Gao, J. Jang, D.-W. Cho, 3D printed structures for delivery of biomolecules and cells: tissue repair and regeneration. J. Mater. Chem. B 4(47), 7521–7539 (2016)CrossRefGoogle Scholar
  92. B.C. Patel, J. Hoffmann, Management of complex orbital fractures. Facial Plast. Surg. FPS 14(1), 83–104 (Jan. 1998)CrossRefGoogle Scholar
  93. M. Perry, P. Banks, R. Richards, E.P. Friedman, P. Shaw, The use of computer-generated three-dimensional models in orbital reconstruction. Br. J. Oral Maxillofac. Surg. 36(4), 275–284 (1998)CrossRefGoogle Scholar
  94. P. Potamianos, A.A. Amis, A.J. Forester, M. Mcgurk, M. Bircher, Rapid prototyping for orthopaedic surgery. Proc Inst Mech Eng Part H 212, 383–393 (2015)CrossRefGoogle Scholar
  95. M. Poulsen, C. Lindsay, T. Sullivan, P. D’Urso, Stereolithographic modelling as an aid to orbital brachytherapy. Int. J. Radiat. Oncol. Biol. Phys. 44(3), 731–735 (1999)CrossRefGoogle Scholar
  96. M.D. Reller, M.J. Strickland, T. Riehle-Colarusso, W.T. Mahle, A. Correa, Prevalence of congenital heart defects in metropolitan Atlanta, 1998-2005. J. Pediatr. 153(6), 807–813 (Dec. 2008)CrossRefGoogle Scholar
  97. F. Rengier et al., 3D printing based on imaging data: review of medical applications. Int. J. Comput. Assist. Radiol. Surg. 5(4), 335–341 (2010)CrossRefGoogle Scholar
  98. M. Robiony et al., Accuracy of virtual reality and stereolithographic models in maxillo-facial surgical planning. J. Craniofac. Surg. 19(2), 482–489 (2008)CrossRefGoogle Scholar
  99. D. Rohner, R. Guijarro-Martínez, P. Bucher, B. Hammer, Importance of patient-specific intraoperative guides in complex maxillofacial reconstruction. J. Cranio-Maxillofac. Surg. 41(5), 382–390 (2013)CrossRefGoogle Scholar
  100. M. Ruf and J. Harms, Hemivertebra resection by a posterior approach: innovative operative technique and first results. Spine, (2002)Google Scholar
  101. H.F. Sailer, P.E. Haers, C.P. Zollikofer, T. Warnke, F.R. Carls, P. Stucki, The value of stereolithographic models for preoperative diagnosis of craniofacial deformities and planning of surgical corrections. Int. J. Oral Maxillofac. Surg. 27(5), 327–333 (1998)CrossRefGoogle Scholar
  102. E.K. Sannomiya, J.V.L. Silva, A.A. Brito, D.M. Saez, F. Angelieri, G. da Silva Dalben, Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod 106, 36–40 (2008)CrossRefGoogle Scholar
  103. C. Santler, H. Karcher, C. Ruda, Indications and limitations of three-dimensional models in cranio-maxillofacial surgery. J. Craniomaxillofac. Surg. 26(1), 11–16 (1998)CrossRefGoogle Scholar
  104. R.M. Satava, Accomplishments and challenges of surgical simulation. Surg. Endosc. 15(3), 232–241 (Mar. 2001)CrossRefGoogle Scholar
  105. S. Schievano et al., Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 242(2), 490–497 (2007)CrossRefGoogle Scholar
  106. D. Schmauss et al., Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann. Thorac. Surg. 93(2), e31–e33 (2012)CrossRefGoogle Scholar
  107. D. Schmauss, N. Gerber, R. Sodian, Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg 145(5), 1407–1408 (2013)CrossRefGoogle Scholar
  108. I. Shiraishi, M. Yamagishi, K. Hamaoka, M. Fukuzawa, T. Yagihara, Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 37(2), 302–306 (2010)Google Scholar
  109. D.P. Sinn, J.E. Cillo, B. a Miles, Stereolithography for craniofacial surgery. J. Craniofac. Surg. 17(5), 869–875 (2006)CrossRefGoogle Scholar
  110. R. Sodian et al., Stereolithographic models for surgical planning in congenital heart surgery. Ann. Thorac. Surg. 83, 1854–1857 (2007)CrossRefGoogle Scholar
  111. R. Sodian et al., Pediatric cardiac transplantation: Three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J. Thorac. Cardiovasc. Surg. 136(4), 1098–1099 (2008a)CrossRefGoogle Scholar
  112. R. Sodian et al., Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting. Ann. Thorac. Surg. 85(6), 2105–2108 (2008b)CrossRefGoogle Scholar
  113. R. Sodian et al., 3-dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann. Thorac. Surg. 88(3), 974–978 (2009)CrossRefGoogle Scholar
  114. P.J. Spevak, P.T. Johnson, E.K. Fishman, Surgically corrected congenital heart disease: utility of 64-MDCT. AJR Am. J. Roentgenol. 191(3), 854–861 (2008)CrossRefGoogle Scholar
  115. B.S. Spottiswoode et al., Preoperative three-dimensional model creation of magnetic resonance brain images as a tool to assist neurosurgical planning. Stereotact. Funct. Neurosurg. 91(3), 162–169 (2013)CrossRefGoogle Scholar
  116. A.T. Stadie et al., Virtual reality system for planning minimally invasive neurosurgery. Technical note. J. Neurosurg. 108(2), 382–394 (Feb. 2008)CrossRefGoogle Scholar
  117. Z.A. Starosolski, J.H. Kan, S.D. Rosenfeld, R. Krishnamurthy, A. Annapragada, Application of 3-D printing (rapid prototyping) for creating physical models of pediatric orthopedic disorders. Pediatr. Radiol. 44(2), 216–221 (2014)CrossRefGoogle Scholar
  118. Y. Su, M. Wang, and W. Chang, Slotted acetabular augmentation in the treatment of painful residual dysplastic hips in adolescents and young adults. J. Formos. Med. …, (2008)Google Scholar
  119. M. Suzuki, Y. Ogawa, A. Hagiwara, H. Yamaguchi, H. Ono, Rapidly prototyped temporal bone model for otological education. ORL J. Oto-Rhino-Laryngol. Its Relat. Spec. 66(2), 62–64 (2004a)CrossRefGoogle Scholar
  120. M. Suzuki, Y. Ogawa, A. Kawano, A. Hagiwara, H. Yamaguchi, H. Ono, Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol. (Stockh.) 124(4), 400–402 (2004b)CrossRefGoogle Scholar
  121. M. Suzuki, A. Hagiwara, S. Kawaguchi, H. Ono, Application of a rapid-prototyped temporal bone model for surgical planning. Acta Otolaryngol. (Stockh.) 125(1), 29–32 (Jan. 2005)CrossRefGoogle Scholar
  122. A. Thompson and D. Marks, Long-term results of combined anterior and posterior convex epiphysiodesis for congenital scoliosis due to hemivertebrae. Spine, (1995)Google Scholar
  123. J.W.M. Tyl, L.E.C.M. Blank, L. Koornneef, Brachytherapy in orbital tumors. Ophthalmology 104(9), 1475–1479 (Sep. 1997)CrossRefGoogle Scholar
  124. M. Umer, A. Thambyah, W. Tan, and S. De, Acetabular morphometry for determining hip dysplasia in the Singaporean population. J. Orthop. , (2006)Google Scholar
  125. P. S. D. Urso et al., A technical note, (1999).Google Scholar
  126. I. Valverde et al., Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 52(6), 1139–1148 (Dec. 2017)CrossRefGoogle Scholar
  127. M. Vranicar, W. Gregory, W.I. Douglas, P. Di Sessa, T.G. Di Sessa, The use of stereolithographic hand held models for evaluation of congenital anomalies of the great arteries. Stud. Health Technol. Inform. 132, 538–543 (Jan. 2008)Google Scholar
  128. V. Waran et al., Injecting realism in surgical training—initial simulation experience with custom 3d models. J. Surg. Educ. 71(2), 193–197 (2014a)CrossRefGoogle Scholar
  129. V. Waran, V. Narayanan, R. Karuppiah, S.L.F. Owen, T. Aziz, Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons. J. Neurosurg. 120(2), 489–492 (2014b)CrossRefGoogle Scholar
  130. V. Waran et al., Neurosurgical endoscopic training via a realistic 3-dimensional model with pathology. Simul. Healthc. J. Soc. Simul. Healthc. 10(1), 43–48 (2015)CrossRefGoogle Scholar
  131. R.A. Watson, A Low-Cost Surgical Application of Additive Fabrication. J. Surg. Educ. 71(1), 14–17 (2014)CrossRefGoogle Scholar
  132. J. Winder, R. Bibb, Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J. Oral Maxillofac. Surg. 63(7), 1006–1015 (2005)CrossRefGoogle Scholar
  133. R. Winter, J. Moe, and J. Lonstein, Posterior spinal arthrodesis for congenital scoliosis. An analysis of the cases of two hundred and ninety patients, five to nineteen years old. J. Bone Jt. Surg., (1984)Google Scholar
  134. Z.-X. Wu et al., Accuracy and safety assessment of pedicle screw placement using the rapid prototyping technique in severe congenital scoliosis. J. Spinal Disord. Tech. 24(7), 444–450 (2011)CrossRefGoogle Scholar
  135. G. Wurm, B. Tomancok, P. Pogady, K. Holl, J. Trenkler, Cerebrovascular stereolithographic biomodeling for aneurysm surgery. Technical note. J Neurosurg 100(1), 139–145 (2004)CrossRefGoogle Scholar
  136. W.-H. Xu, J. Liu, M.-L. Li, Z.-Y. Sun, J. Chen, J.-H. Wu, 3D printing of intracranial artery stenosis based on the source images of magnetic resonance angiograph. Ann. Transl. Med. 2(8), 74 (2014)Google Scholar
  137. P. Zardini, P. Marino, G. Golia, M. Anselmi, M. Castelli, Ventricular remodeling and infarct expansion. Am. J. Cardiol. 72(19), G98–G106 (Dec. 1993)CrossRefGoogle Scholar
  138. L. Zhou, L. He, H. Shang, G. Liu, J. Zhao, Y. Liu, Correction of hemifacial microsomia with the help of mirror imaging and a rapid prototyping technique: case report. Br. J. Oral Maxillofac. Surg. 47(6), 486–488 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anurup Ganguli
    • 1
    • 2
  • Gelson J. Pagan-Diaz
    • 1
    • 2
  • Lauren Grant
    • 1
    • 2
  • Caroline Cvetkovic
    • 1
    • 2
    • 3
  • Mathew Bramlet
    • 4
    • 5
  • John Vozenilek
    • 1
    • 4
    • 5
    • 6
  • Thenkurussi Kesavadas
    • 5
    • 6
  • Rashid Bashir
    • 1
    • 2
    • 7
    • 8
  1. 1.Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Center for NeuroregenerationHouston Methodist Research InstituteHoustonUSA
  4. 4.OSF Saint Francis Medical CenterUniversity of Illinois College of Medicine at PeoriaUrbanaUSA
  5. 5.Jump Trading Simulation & Education CenterPeoriaUSA
  6. 6.Healthcare Engineering Systems Center, College of EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  7. 7.Department of Industrial and Enterprise Systems EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  8. 8.Carle Illinois College of MedicineUrbanaUSA

Personalised recommendations