Advertisement

A patterned polystyrene-based microelectrode array for in vitro neuronal recordings

  • Audrey Hammack
  • Rashed T. Rihani
  • Bryan J. Black
  • Joseph J. Pancrazio
  • Bruce E. Gnade
Article
  • 103 Downloads

Abstract

Substrate-integrated microelectrode arrays (MEAs) are non-invasive platforms for recording supra-threshold signals, i.e. action potentials or spikes, from a variety of cultured electrically active cells, and are useful for pharmacological and toxicological studies. However, the MEA substrate, which is often fabricated using semiconductor processing technology, presents some challenges to the user. Specifically, the electrode encapsulation, which may consist of a variety of inorganic and organic materials, requires a specific substrate preparation protocol to optimize cell adhesion to the surface. Often, these protocols differ from and are more complex than traditional protocols for in vitro cell culture in polystyrene petri dishes. Here, we describe the fabrication of an MEA with indium tin oxide microelectrodes and a patterned polystyrene electrode encapsulation. We demonstrate the electrochemical stability of the electrodes and encapsulation, and show viable cell culture and in vitro recordings.

Keywords

Polystyrene Microelectrode array Extracellular recording Primary neuronal cultures Neuronal recording 

Notes

Acknowledgements

The authors acknowledge support from NSF PFI grant number IIP-1114211 (PI: BE Gnade). The authors would also like to thank the staff of the University of Texas at Dallas clean room for many helpful processing suggestions.

References

  1. E. Berthier, E.W.K. Young, D. Beebe, Engineers are from PDMS-land, biologists are from polystyrenia. Lab. Chip. 12(7), 1224–1237 (2012)CrossRefGoogle Scholar
  2. J.C. Chang, G.J. Brewer, B.C. Wheeler, Microelectrode array recordings of patterned hippocampal neurons for four weeks. Biomed. Microdevices. 2(4), 245–253 (2000)CrossRefGoogle Scholar
  3. H. Charkhkar et al., Use of cortical neuronal networks for in vitro material biocompatibility testing. Biosens. Bioelectron. 53(15), 316–323 (2014)CrossRefGoogle Scholar
  4. H. Charkhkar et al., Amyloid beta modulation of neuronal network activity in vitro. Brain. Res. 1629, 1–9 (2015)CrossRefGoogle Scholar
  5. H. Charkhkar et al., Novel disposable microelectrode array for cultured neuronal network recording exhibiting equivalent performance to commercially available arrays. Sensors. Actuators B. Chem. 226, 232–238 (2016)CrossRefGoogle Scholar
  6. C.D. Chin, T. Laksanasopin, Y.K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse, G. Umviligihozo, et al., Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 17(8), 1015–1019 (2011)CrossRefGoogle Scholar
  7. P. Connolly, P. Clark, A.S.G. Curtis, J.A.T. Dow, C.D.W. Wilkinson, An extracellular microelectrode array for monitoring electrogenic cells in culture. Biosens. Bioelectron. 5(3), 223–234 (1990)CrossRefGoogle Scholar
  8. A. Gramowski, K. Jügelt, D.G. Weiss, G.W. Gross, Substance identification by quantitative characterization of oscillatory activity in murine spinal cord networks on microelectrode arrays. Eur. J. Neurosci. 19(10), 2815–2825 (2004)CrossRefGoogle Scholar
  9. S.M. Grist, N. Oyunerdene, J. Flueckiger, J. Kim, P.C. Wong, L. Chrostowski, K.C. Cheung, Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications. Analyst. 139(22), 5718–5727 (2014)CrossRefGoogle Scholar
  10. G.W. Gross, E. Rieske, G.W. Kreutzberg, A. Meyer, A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neurosci. Lett. 6(2), 101–105 (1977)CrossRefGoogle Scholar
  11. F.M. Hasan, Y. Berdichevsky, Neural circuits on a chip. Micromachines. 7(9), 1 (2016)CrossRefGoogle Scholar
  12. A.F.M. Johnstone, G.W. Gross, D.G. Weiss, O.H.U. Schroeder, A. Gramowski, T.J. Shafer, Microelectrode arrays: A physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology. 31(4), 331–350 (2010)CrossRefGoogle Scholar
  13. G. Kang, J. Lee, C. Lee, Y. Nam, Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing. Lab. Chip. 9(22), 3236 (2009)CrossRefGoogle Scholar
  14. G.L. Knaack, H. Charkhkar, F.W. Hamilton, N. Peixoto, T.J. O'Shaughnessy, J.J. Pancrazio, Differential responses to ω-agatoxin IVA in murine frontal cortex and spinal cord derived neuronal networks. Neurotoxicology. 37, 19–25 (2013)CrossRefGoogle Scholar
  15. C.G. Langhammer, M.K. Kutzing, V. Luo, J.D. Zahn, B. Firestein, A topographically modified substrate-embedded MEA for directed myotube formation at electrode contact sites. Ann. Biomed. Eng. 41, 408 (2013)CrossRefGoogle Scholar
  16. B.K. Leung, R. Biran, C.J. Underwood, P.A. Tresco, Characterization of microglial attachment and cytokine release on biomaterials of differing surface chemistry. Biomaterials. 29(23), 3289–3297 (2008)CrossRefGoogle Scholar
  17. D.A. Mair, E. Geiger, A.P. Pisano, J.M.J. Frechet, F. Svec, Injection molded microfluidic chips featuring integrated interconnects. Lab Chip 6(10), 1346–1354 (2006)CrossRefGoogle Scholar
  18. J.J. Mastrototaro, H.Z. Massoud, T.C. Pilkington, R.E. Ideker, Rigid and flexible thin-film multielectrode arrays for transmural cardiac recording. IEEE Trans. Biomed. Eng. 39(3), 271–279 (1992)CrossRefGoogle Scholar
  19. Nam, Yoonkey and Wheeler, B. C, Multichannel recording and stimulation of neuronal cultures grown on microstamped poly-D-lysine. 4049 p (2004)Google Scholar
  20. Y. Nam, K. Musick, B.C. Wheeler, Application of a PDMS microstencil as a replaceable insulator toward a single-use planar microelectrode array. Biomed. Microdevices 8(4), 375–381 (2006)CrossRefGoogle Scholar
  21. E.G. Navarrete, P. Liang, F. Lan, V. Sanchez-Freire, C. Simmons, T. Gong, A. Sharma, P.W. Burridge, B. Patlolla, A.S. Lee, et al., Screening drug-induced arrhythmia using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays. Circulation. 128(11), S3 (2013)CrossRefGoogle Scholar
  22. V. Nock, R.J. Blaikie, T. David, Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices. Lab. Chip. 8(8), 1300–1307 (2008)CrossRefGoogle Scholar
  23. H. Oka, K. Shimono, R. Ogawa, H. Sugihara, M. Taketani, A new planar multielectrode array for extracellular recording: Application to hippocampal acute slice. J. Neurosci. Methods. 93(1), 61–67 (1999)CrossRefGoogle Scholar
  24. X.C. Ong, G.K. Fedder, P.J. Gilgunn, Modulation of parylene-C to silicon adhesion using HMDS priming. J. Micromech. Microeng. 24(10), 105001 (2014)CrossRefGoogle Scholar
  25. J.J. Pancrazio, J.P. Whelan, D.A. Borkholder, W. Ma, D.A. Stenger, Development and application of cell-based biosensors. Ann. Biomed. Eng. 27(6), 697–711 (1999)CrossRefGoogle Scholar
  26. J.J. Pancrazio, S.A. Gray, Y.S. Shubin, N. Kulagina, D.S. Cuttino, K.M. Shaffer, K. Eisemann, A. Curran, B. Zim, G.W. Gross, et al., A portable microelectrode array recording system incorporating cultured neuronal networks for neurotoxin detection. Biosens. Bioelectron. 18(11), 1339–1347 (2003)CrossRefGoogle Scholar
  27. D.A. Robinson, The electrical properties of metal microelectrodes. Proc. IEEE. 56(6), 1065–1071 (1968)CrossRefGoogle Scholar
  28. Ryynänen T., Kujala V., Ylä-Outinen L., Kerklä E., Narkilahti S. and Lekkala J, Polystyrene coated MEA. Proceedings of the 7th intl. meeting on substrate-integrated microelectrode arrays; June 29–July 2; BIOPRO Baden-Württemberg GmbH. 265–266 p (2010)Google Scholar
  29. A. Scarlatos, A.J. Cadotte, T.B. DeMarse, B.A. Welt, Cortical networks grown on microelectrode arrays as a biosensor for botulinum toxin. J. Food Sci. 73(3), E129–E136 (2008)CrossRefGoogle Scholar
  30. A. Stett, U. Egert, E. Guenther, F. Hofmann, T. Meyer, W. Nisch, H. Haemmerle, Biological application of microelectrode arrays in drug discovery and basic research. Anal. Bioanal. Chem. 377(3), 486–495 (2003)CrossRefGoogle Scholar
  31. T. Trantidou, C.M. Terracciano, D. Kontziampasis, E.J. Humphrey, T. Prodromakis, Biorealistic cardiac cell culture platforms with integrated monitoring of extracellular action potentials. Sci. Rep. 5, 11067 (2015)CrossRefGoogle Scholar
  32. C.W. Tsao, D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 6(1), 1–16 (2009)CrossRefGoogle Scholar
  33. D.A. Wagenaar, J. Pine, S.M. Potter, Effective parameters for stimulation of dissociated cultures using multi-electrode arrays. J. Neurosci. Methods 138(1), 27–37 (2004)CrossRefGoogle Scholar
  34. G. Xiang et al., Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro. Biosens. Bioelectron. 22(11), 2478–2484 (2007)CrossRefGoogle Scholar
  35. E.W.K. Young, E. Berthier, D.J. Guckenberger, E. Sackmann, C. Lamers, I. Meyvantsson, A. Huttenlocher, D.J. Beebe, Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal. Chem. 83(4), 1408–1417 (2011)CrossRefGoogle Scholar
  36. Zhang Y, Zhang X, Fang J, Jiang S, Zhang Y, Gu D, Nelson RD, and LaRue JC. 30 September, Application of SU-8 as the insulator toward a novel planar microelectrode array for extracellular neural recording. Proceedings of the 2010 5th IEEE international conference on nano/micro engineered and molecular systems; 20–23 January 2010; 395 p (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Texas at DallasRichardsonUSA
  2. 2.Department of BioengineeringUniversity of Texas at DallasRichardsonUSA
  3. 3.Department of Materials Science & EngineeringUniversity of Texas at DallasRichardsonUSA
  4. 4.Department of Mechanical EngineeringSouthern Methodist UniversityDallasUSA

Personalised recommendations