Advertisement

An efficient method for CTCs screening with excellent operability by integrating Parsortix™-like cell separation chip and selective size amplification

  • Xin Jin
  • Rui Chen
  • Shikun Zhao
  • Peiyong Li
  • Bai Xue
  • Xiang Chen
  • Xinyuan Zhu
Article
  • 216 Downloads

Abstract

In this article, an attempt for efficient screening of circulating tumor cells (CTCs) with excellent operability on microfluidic chips was reported. A Parsortix™-like cell separation chip was manufactured in our lab. This chip allowed lateral flow of fluid which increased the flow rate of blood. And, an air valve controlled injection pump was manufactured which allowed eight chips working simultaneously. This greatly facilitated the blood treatment process and saved time. As for the mechanism of screening circulating tumor cells, selective size amplification was utilized. By size amplification of cancer cells, both the hardness and the size of CTCs increased which differentiated them from blood cells. And the modification procedure of beads used for size amplification of cancer cells was optimized. Finally, by integrating the commercialized Parsortix™-like cell separation chip and selective size amplification, a practical method for screening circulating tumor cells was established.

Keywords

Circulating tumor cells Commercialized chips Selective size amplification High through-put Good operability 

Notes

Acknowledgements

This research was supported by the National High-tech R&D Program of China (863 Program 2015AA020401), the National Basic Research Program (2015CB931801) and the National Natural Science Foundation of China (51690151, 51473093).

Supplementary material

10544_2018_293_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1235 kb)
10544_2018_293_MOESM2_ESM.mp4 (5.2 mb)
Movie S1 (MP4 5304 kb)

References

  1. S.K. Arya, B. Lim, A.R.A. Rahman, Lab Chip 13, 1995–2027 (2013)CrossRefGoogle Scholar
  2. P.K. Chaudhuri, M. Ebrahimi Warkiani, T. Jing, Kenry, C.T. Lim, Analyst 141, 504–524 (2016)CrossRefGoogle Scholar
  3. J. Chen, D. Chen, T. Yuan, Y. Xie, X. Chen, Biomicrofluidics, 7 (2013)Google Scholar
  4. Y.C. Chen, P. Li, P.H. Huang, Y.L. Xie, J.D. Mai, L. Wang, N.T. Nguyen, T.J. Huang, Lab Chip 14, 626–645 (2014)CrossRefGoogle Scholar
  5. M. Cristofanilli, G.T. Budd, M.J. Ellis, A. Stopeck, J. Matera, M.C. Miller, J.M. Reuben, G.V. Doyle, W.J. Allard, L. Terstappen, D.F. Hayes, N. Engl. J. Med. 351, 781–791 (2004)CrossRefGoogle Scholar
  6. J.S. de Bono, H.I. Scher, R.B. Montgomery, C. Parker, M.C. Miller, H. Tissing, G.V. Doyle, L.W.W.M. Terstappen, K.J. Pienta, D. Raghavan, Clin. Cancer Res. 14, 6302–6309 (2008)CrossRefGoogle Scholar
  7. G.F. Guan, L.D. Wu, A.A.S. Bhagat, Z.R. Li, P.C.Y. Chen, S.Z. Chao, C.J. Ong, J.Y. Han, Sci. Rep. 3, 1475 (2013)CrossRefGoogle Scholar
  8. G.E. Hvichia, Z. Parveen, C. Wagner, M. Janning, J. Quidde, A. Stein, V. Muller, S. Loges, R.P.L. Neves, N.H. Stoecklein, H. Wikman, S. Riethdorf, K. Pantel, T.M. Gorges, Int. J. Cancer 138, 2894–2904 (2016)CrossRefGoogle Scholar
  9. K.A. Hyun, J. Kim, H. Gwak, H.I. Jung, Analyst 141, 382–392 (2016)CrossRefGoogle Scholar
  10. C. Jin, S.M. McFaul, S.P. Duffy, X. Deng, P. Tavassoli, P.C. Black, H. Ma, Lab Chip 14, 32–44 (2014)CrossRefGoogle Scholar
  11. J.H. Kang, S. Krause, H. Tobin, A. Mammoto, M. Kanapathipillai, D.E. Ingber, Lab Chip 12, 2175–2181 (2012)CrossRefGoogle Scholar
  12. N.M. Karabacak, P.S. Spuhler, F. Fachin, E.J. Lim, V. Pai, E. Ozkumur, J.M. Martel, N. Kojic, K. Smith, P.I. Chen, J. Yang, H. Hwang, B. Morgan, J. Trautwein, T.A. Barber, S.L. Stott, S. Maheswaran, R. Kapur, D.A. Haber, M. Toner, Nat. Protoc. 9, 694–710 (2014)CrossRefGoogle Scholar
  13. B.L. Khoo, M.E. Warkiani, D.S.W. Tan, A.A.S. Bhagat, D. Irwin, D.P. Lau, A.S.T. Lim, K.H. Lim, S.S. Krisna, W.T. Lim, Y.S. Yap, S.C. Lee, R.A. Soo, J. Han, C.T. Lim, PLoS One 9, e99409 (2014)CrossRefGoogle Scholar
  14. M.S. Kim, T.S. Sim, Y.J. Kim, S.S. Kim, H. Jeong, J.M. Park, H.S. Moon, S.I. Kim, O. Gurel, S.S. Lee, J.G. Lee, J.C. Park, Lab Chip 12, 2874–2880 (2012)CrossRefGoogle Scholar
  15. Y.J. Kim, S.H. Kim, T. Fujii, Y.T. Matsunaga, Biomater. Sci. 4, 953–957 (2016)CrossRefGoogle Scholar
  16. P. Li, Z.M. Mao, Z.L. Peng, L.L. Zhou, Y.C. Chen, P.H. Huang, C.I. Truica, J.J. Drabick, W.S. El-Deiry, M. Dao, S. Suresh, T.J. Huang, Proc. Natl. Acad. Sci. U. S. A. 112, 4970–4975 (2015)CrossRefGoogle Scholar
  17. C.J. Liao, C.H. Hsieh, H.M. Wang, W.-P. Chou, T.K. Chiu, J.H. Chang, A.C. Chao, M.H. Wu, RSC Adv. 7, 29339–29349 (2017)CrossRefGoogle Scholar
  18. L.S. Lim, M. Hu, M.C. Huang, W.C. Cheong, A.T.L. Gan, X.L. Looi, S.M. Leong, E.S.C. Koay, M.H. Li, Lab Chip 12, 4388–4396 (2012)CrossRefGoogle Scholar
  19. W. Liu, L. Nie, F. Li, Z.P. Aguilar, H. Xu, Y. Xiong, F. Fu, H. Xu, Biomater. Sci. 4, 159–166 (2016)CrossRefGoogle Scholar
  20. S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Nature 450, 1235–U1210 (2007)CrossRefGoogle Scholar
  21. E. Ozkumur, A.M. Shah, J.C. Ciciliano, B.L. Emmink, D.T. Miyamoto, E. Brachtel, M. Yu, P.I. Chen, B. Morgan, J. Trautwein, A. Kimura, S. Sengupta, S.L. Stott, N.M. Karabacak, T.A. Barber, J.R. Walsh, K. Smith, P.S. Spuhler, J.P. Sullivan, R.J. Lee, D.T. Ting, X. Luo, A.T. Shaw, A. Bardia, L.V. Sequist, D.N. Louis, S. Maheswaran, R. Kapur, D.A. Haber, M. Toner, Sci. Transl. Med. 5, 179ra47 (2013)CrossRefGoogle Scholar
  22. P. Patil, T.K. Madhuprasad, D. Losic, M. Kurkuri, RSC Adv. 5, 89745–89762 (2015)CrossRefGoogle Scholar
  23. S. Riethdorf, H. Fritsche, V. Mueller, T. Rau, C. Schindibeck, B. Rack, W. Janni, C. Coith, K. Beck, F. Jaenicke, S. Jackson, T. Gornet, M. Cristofanilli, K. Pantel, Clin. Cancer Res. 13, 920–928 (2007)CrossRefGoogle Scholar
  24. Y. Song, T. Tian, Y. Shi, W. Liu, Y. Zou, T. Khajvand, S. Wang, Z. Zhu, C. Yang, Chem. Sci. 8, 1736–1751 (2017)CrossRefGoogle Scholar
  25. S.L. Stott, C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, B.A. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd, A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, D.A. Haber, M. Toner, Proc. Natl. Acad. Sci. U. S. A. 107, 18392–18397 (2010)CrossRefGoogle Scholar
  26. Z. Wang, W. Wu, Z. Wang, Y. Tang, Y. Deng, L. Xu, J. Tian, Q. Shi, Analyst 141, 3621–3625 (2016)CrossRefGoogle Scholar
  27. M.E. Warkiani, B.L. Khoo, D.S.W. Tan, A.A.S. Bhagat, W.-T. Lim, Y.S. Yap, S.C. Lee, R.A. Soo, J. Han, C.T. Lim, Analyst 139, 3245–3255 (2014)CrossRefGoogle Scholar
  28. G. Xu, Y. Tan, T. Xu, D. Yin, M. Wang, M. Shen, X. Chen, X. Shi, X. Zhu, Biomater. Sci. 5, 752–761 (2017)CrossRefGoogle Scholar
  29. L. Yu, S.R. Ng, Y. Xu, H. Dong, Y.J. Wang, C.M. Li, Lab Chip 13, 3163–3182 (2013)CrossRefGoogle Scholar
  30. W. Zhang, S. Guo, W.S. Pereira Carvalho, Y. Jiang, M.J. Serpe, Anal. Methods 8, 7847–7867 (2016)CrossRefGoogle Scholar
  31. M.X. Zhao, P.G. Schiro, J.S. Kuo, K.M. Koehler, D.E. Sabath, V. Popov, Q.H. Feng, D.T. Chiu, Anal. Chem. 85, 2465–2471 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouChina
  3. 3.National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano ElectronicsShanghai Jiao Tong UniversityShanghaiChina
  4. 4.Department of Nuclear Medicine, and Department of Gastrointestinal Surgery, Ruijin Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations