A vacuum-actuated microtissue stretcher for long-term exposure to oscillatory strain within a 3D matrix

  • Matthew Walker
  • Michel Godin
  • Andrew E. PellingEmail author


Although our understanding of cellular behavior in response to extracellular biological and mechanical stimuli has greatly advanced using conventional 2D cell culture methods, these techniques lack physiological relevance. To a cell, the extracellular environment of a 2D plastic petri dish is artificially flat, extremely rigid, static and void of matrix protein. In contrast, we developed the microtissue vacuum-actuated stretcher (MVAS) to probe cellular behavior within a 3D multicellular environment composed of innate matrix protein, and in response to continuous uniaxial stretch. An array format, compatibility with live imaging and high-throughput fabrication techniques make the MVAS highly suited for biomedical research and pharmaceutical discovery. We validated our approach by characterizing the bulk microtissue strain, the microtissue strain field and single cell strain, and by assessing F-actin expression in response to chronic cyclic strain of 10%. The MVAS was shown to be capable of delivering reproducible dynamic bulk strain amplitudes up to 13%. The strain at the single cell level was found to be 10.4% less than the microtissue axial strain due to cellular rotation. Chronic cyclic strain produced a 35% increase in F-actin expression consistent with cytoskeletal reinforcement previously observed in 2D cell culture. The MVAS may further our understanding of the reciprocity shared between cells and their environment, which is critical to meaningful biomedical research and successful therapeutic approaches.


Microtissue Cell mechanics 3D cell culture Microfabrication 



M.W. is supported by OGS (Ontario Graduate Scholarship). The authors acknowledge support from individual NSERC Discovery Grants (M.G. and A.E.P.). A.E.P also acknowledges generous support from the Canada Research Chairs program.

Author contributions

M.W. performed the data acquisition and analysis and wrote the manuscript. All authors contributed to the study design and revised the manuscript.

Compliance with ethical standards

Competing interests

The authors declare no competing financial interests.

Supplementary material

10544_2018_286_MOESM1_ESM.docx (6.1 mb)
ESM 1 (DOCX 6243 kb)
10544_2018_286_MOESM2_ESM.avi (18.4 mb)
ESM 2 (AVI 18830 kb)


  1. K. L. Billiar, in (Springer, Berlin, Heidelberg, 2010), pp. 201–245Google Scholar
  2. S. Chagnon-Lessard, H. Jean-Ruel, M. Godin, A.E. Pelling, Integr. Biol. 66, 409 (2017)Google Scholar
  3. Y. Cui, F.M. Hameed, B. Yang, K. Lee, C.Q. Pan, S. Park, M. Sheetz, Nat. Commun. 6, 6333 (2015)CrossRefGoogle Scholar
  4. L. Deng, N.J. Fairbank, B. Fabry, P.G. Smith, G.N. Maksym, Am. J. Physiol. Cell Physiol. 287, C440 (2004)CrossRefGoogle Scholar
  5. D.E. Discher, P. Janmey, Y.-L. Wang, Science 310, 1139 (2005)CrossRefGoogle Scholar
  6. R. Edmondson, J.J. Broglie, A.F. Adcock, L. Yang, Assay Drug Dev. Technol. 12, 207 (2014)CrossRefGoogle Scholar
  7. J. Eyckmans, T. Boudou, X. Yu, C.S. Chen, Dev. Cell 21, 35 (2011)CrossRefGoogle Scholar
  8. L.G. Griffith, M.A. Swartz, Nat. Rev. Mol. Cell Biol. 7, 211 (2006)CrossRefGoogle Scholar
  9. K.M. Hakkinen, J.S. Harunaga, A.D. Doyle, K.M. Yamada, Tissue Eng. Part A 17, 713 (2011)CrossRefGoogle Scholar
  10. W.M. Han, S.-J. Heo, T.P. Driscoll, L.J. Smith, R.L. Mauck, D.M. Elliott, Biophys. J. 105, 807 (2013)CrossRefGoogle Scholar
  11. H. Hirata, H. Tatsumi, M. Sokabe, J. Cell Sci. 121, 2795 (2008)CrossRefGoogle Scholar
  12. D. Huh, B.D. Matthews, A. Mammoto, M. Montoya-Zavala, H.Y. Hsin, D.E. Ingber, Science 328, 80 (2010)CrossRefGoogle Scholar
  13. D.E. Ingber, FASEB J. 20, 811 (2006)CrossRefGoogle Scholar
  14. N.F. Jufri, A. Mohamedali, A. Avolio, M.S. Baker, Vasc. Cell 7, 8 (2015)CrossRefGoogle Scholar
  15. K. Kanda, T. Matsuda, T. Oka, ASAIO J. 39, M686 (n.d.)Google Scholar
  16. B.-S. Kim, J. Nikolovski, J. Bonadio, D.J. Mooney, Nat. Biotechnol. 17, 979 (1999)CrossRefGoogle Scholar
  17. J. Lee, M.J. Cuddihy, N.A. Kotov, Tissue Eng. Part B Rev. 14, 61 (2008)CrossRefGoogle Scholar
  18. W.R. Legant, A. Pathak, M.T. Yang, V.S. Deshpande, R.M. McMeeking, C.S. Chen, Proc. Natl. Acad. Sci. U. S. A. 106, 10097 (2009)CrossRefGoogle Scholar
  19. A.S. Liu, H. Wang, C.R. Copeland, C.S. Chen, V.B. Shenoy, D.H. Reich, Sci. Rep. 6, 33919 (2016)CrossRefGoogle Scholar
  20. B.D. Lucas, T. Kanade, Proc. 7th Int. Jt. Conf. Artif. Intell. 2, 674 (1981)Google Scholar
  21. G.N. Maksym, L. Deng, N.J. Fairbank, C.A. Lall, S.C. Connolly, Can. J. Physiol. Pharmacol. 83, 913 (2005)CrossRefGoogle Scholar
  22. I. Martin, D. Wendt, M. Heberer, Trends Biotechnol. 22, 80 (2004)CrossRefGoogle Scholar
  23. F. Pampaloni, E.G. Reynaud, E.H.K. Stelzer, Nat. Rev. Mol. Cell Biol. 8, 839 (2007)CrossRefGoogle Scholar
  24. J.A. Pedersen, M.A. Swartz, Ann. Biomed. Eng. 33, 1469 (2005)CrossRefGoogle Scholar
  25. N. Pender, C.A. McCulloch, J. Cell Sci. 100 (1991)Google Scholar
  26. B.D. Riehl, J.-H. Park, I.K. Kwon, J.Y. Lim, Tissue Eng. Part B Rev. 18, 288 (2012)CrossRefGoogle Scholar
  27. D. Seliktar, R.A. Black, R.P. Vito, R.M. Nerem, Ann. Biomed. Eng. 28, 351 (2000)CrossRefGoogle Scholar
  28. K.-G. Shyu, Clin. Sci. 116 (2009)Google Scholar
  29. P.G. Smith, R. Garcia, L. Kogerman, Exp. Cell Res. 232, 127 (1997)CrossRefGoogle Scholar
  30. P.G. Smith, L. Deng, J.J. Fredberg, G.N. Maksym, Am. J. Physiol. Lung Cell Mol. Physiol. 285 (2003)Google Scholar
  31. J.P. Stegemann, R.M. Nerem, Ann. Biomed. Eng. 31, 391 (2003)CrossRefGoogle Scholar
  32. A.A. Tomei, F. Boschetti, F. Gervaso, M.A. Swartz, Biotechnol. Bioeng. 103, 217 (2009)CrossRefGoogle Scholar
  33. D. Tremblay, S. Chagnon-Lessard, M. Mirzaei, A.E. Pelling, M. Godin, Biotechnol. Lett. 36, 657 (2014)CrossRefGoogle Scholar
  34. A.R. West, N. Zaman, D.J. Cole, M.J. Walker, W.R. Legant, T. Boudou, C.S. Chen, J.T. Favreau, G.R. Gaudette, E.A. Cowley, G.N. Maksym, Am. J. Physiol. Lung Cell Mol. Physiol. 304, L4 (2013)CrossRefGoogle Scholar
  35. B. Williams, J. Hypertens. 16, 1921 (1998)CrossRefGoogle Scholar
  36. F. Xu, R. Zhao, A.S. Liu, T. Metz, Y. Shi, P. Bose, D.H. Reich, Lab Chip 15, 2496 (2015)CrossRefGoogle Scholar
  37. T. Yeung, P.C. Georges, L.A. Flanagan, B. Marg, M. Ortiz, M. Funaki, N. Zahir, W. Ming, V. Weaver, P.A. Janmey, Cell Motil. Cytoskeleton 60, 24 (2005)CrossRefGoogle Scholar
  38. M. Yoshigi, L.M. Hoffman, C.C. Jensen, H.J. Yost, M.C. Beckerle, J. Cell Biol. 171, 209 (2005)CrossRefGoogle Scholar
  39. R. Zhao, T. Boudou, W.G. Wang, C.S. Chen, D.H. Reich, Adv. Mater. 25, 1699 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiologyUniversity of OttawaOttawaCanada
  2. 2.Department of PhysicsUniversity of OttawaOttawaCanada
  3. 3.Department of Mechanical EngineeringUniversity of OttawaOttawaCanada
  4. 4.Ottawa-Carleton Institute for Biomedical EngineeringUniversity of OttawaOttawaCanada
  5. 5.Institute for Science Society and PolicyUniversity of OttawaOttawaCanada
  6. 6.SymbioticA, School of Anatomy, Physiology and Human BiologyUniversity of Western AustraliaPerthAustralia

Personalised recommendations