Bioprinted gelatin hydrogel platform promotes smooth muscle cell contractile phenotype maintenance

  • Ajay Tijore
  • Jean-Marc Behr
  • Scott Alexander Irvine
  • Vrushali Baisane
  • Subbu Venkatraman
Article

Abstract

Three dimensional (3D) bioprinting has been proposed as a method for fabricating tissue engineered small diameter vascular prostheses. This technique not only involves constructing the structural features to obtain a desired pattern but the morphology of the pattern may also be used to influence the behavior of seeded cells. Herein, we 3D bioprinted a gelatin hydrogel microchannel construct to promote and preserve the contractile phenotype of vascular smooth muscle cells (vSMCs), which is crucial for vasoresponsiveness. The microchanneled surface of a gelatin hydrogel facilitated vSMC attachment and an elongated alignment along the microchannel direction. The cells displayed distinct F-actin anisotropy in the direction of the channel. The vSMC contractile phenotype was confirmed by the positive detection of contractile marker gene proteins (α-smooth muscle actin (α-SMA) and smooth muscle-myosin heavy chain (SM-MHC)). Having demonstrated the effectiveness of the hydrogel channels bioprinted on a film, the bioprinting was applied radially to the surface of a 3D tubular construct by integrating a rotating mandrel into the 3D bioprinter. The hydrogel microchannels printed on the 3D tubular vascular construct also orientated the vSMCs and strongly promoted the contractile phenotype. Together, our study demonstrated that microchannels bioprinted using a transglutaminase crosslinked gelatin hydrogel, could successfully promote and preserve vSMC contractile phenotype. Furthermore, the hydrogel bioink could be retained on the surface of a rotating polymer tube to print radial cell guiding channels onto a vascular graft construct.

Keywords

3D extrusion bioprinting Gelatin hydrogel Transglutaminase Vascular prosthesis Vascular smooth muscle cells Contractile phenotype 

Notes

Acknowledgements

This research is supported by the Singapore National Research Foundation under CREATE programme (NRF-Technion): The Regenerative Medicine Initiative in Cardiac Restoration Therapy Research Program.

Compliance with ethical standards

Statement of ethical approval

No ethical approval was required for this study.

Conflict of interest

The authors declare no conflict of interests.

References

  1. G. Abagnale, M. Steger, V.H. Nguyen, N. Hersch, A. Sechi, S. Joussen, B. Denecke, R. Merkel, B. Hoffmann, A. Dreser, U. Schnakenberg, A. Gillner, W. Wagner, Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages. Biomaterials 61, 316–326 (2015)CrossRefGoogle Scholar
  2. A. Agrawal, B.H. Lee, S.A. Irvine, J. An, R. Bhuthalingam, V. Singh, K.Y. Low, C.K. Chua, S.S. Venkatraman, Smooth muscle cell alignment and phenotype control by melt spun Polycaprolactone fibers for seeding of tissue engineered blood vessels. Int. J. Biomater. 434876 (2015)Google Scholar
  3. H. Ahn, Y.M. Ju, H. Takahashi, D.F. Williams, J.J. Yoo, S.J. Lee, T. Okano, A. Atala, Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomater. 16, 14–22 (2015)CrossRefGoogle Scholar
  4. M.S. Baguneid, A.M. Seifalian, H.J. Salacinski, D. Murray, G. Hamilton, M.G. Walker, Tissue engineering of blood vessels. Br. J. Surg. 93, 282–290 (2006)CrossRefGoogle Scholar
  5. R. Bhuthalingam, P.Q. Lim, S.A. Irvine, and S.S. Venkatraman, Automated Robotic Dispensing Technique for Surface Guidance and Bioprinting of Cells, J. Vis. Exp. 117, e54604 (2016)Google Scholar
  6. S. Bolte, F.P. Cordelieres, A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006)MathSciNetCrossRefGoogle Scholar
  7. G. Cama, D.E. Mogosanu, A. Houben and P. Dubruel, Synthetic biodegradable medical polyesters: Poly-ε-caprolactone. In Xiang Zhang (Ed.), Science and Principles of Biodegradable and Bioresorbable Medical Polymers ( Woodhead Publishing, 2017)Google Scholar
  8. J.H. Campbell, G.R. Campbell, Smooth muscle phenotypic modulation--a personal experience. Arterioscler. Thromb. Vasc. Biol. 32, 1784–1789 (2012)CrossRefGoogle Scholar
  9. Y. Cao, Y.F. Poon, J. Feng, S. Rayatpisheh, V. Chan, M.B. Chan-Park, Regulating orientation and phenotype of primary vascular smooth muscle cells by biodegradable films patterned with arrays of microchannels and discontinuous microwalls. Biomaterials 31, 6228–6238 (2010)CrossRefGoogle Scholar
  10. S. Chang, S. Song, J. Lee, J. Yoon, J. Park, S. Choi, J.K. Park, K. Choi, C. Choi, Phenotypic modulation of primary vascular smooth muscle cells by short-term culture on micropatterned substrate. PLoS One 9, e88089 (2014)CrossRefGoogle Scholar
  11. J. Chen, H. Li, N. SundarRaj, J.H. Wang, Alpha-smooth muscle actin expression enhances cell traction force. Cell Motil. Cytoskeleton 64, 248–257 (2007)CrossRefGoogle Scholar
  12. C.Y. Tay, Y-L. Wu, P. Cai, N.S. Tan, S.S Venkatraman, X. Chen, L.P Tan, Bio-inspired micropatterned hydrogel to direct and deconstruct hierarchical processing of geometry-force signals by human mesenchymal stem cells during smooth muscle cell differentiation. NPG Asia Materials 7, e199 (2015)Google Scholar
  13. R.J. Collighan, M. Griffin, Transglutaminase 2 cross-linking of matrix proteins: Biological significance and medical applications. Amino Acids 36, 659–670 (2009)CrossRefGoogle Scholar
  14. V. Crescenzi, A. Francescangeli, A. Taglienti, New gelatin-based hydrogels via enzymatic networking. Biomacromolecules 3, 1384–1391 (2002)CrossRefGoogle Scholar
  15. M. Deutsch, J. Meinhart, T. Fischlein, P. Preiss, P. Zilla, Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: A 9-year experience. Surgery 126, 847–855 (1999)CrossRefGoogle Scholar
  16. W. Fu, Z. Liu, B. Feng, R. Hu, X. He, H. Wang, M. Yin, H. Huang, H. Zhang, W. Wang, Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Int. J. Nanomedicine 9, 2335–2344 (2014)CrossRefGoogle Scholar
  17. J.M. Goffin, P. Pittet, G. Csucs, J.W. Lussi, J.J. Meister, B. Hinz, Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J. Cell Biol. 172, 259–268 (2006)CrossRefGoogle Scholar
  18. C.S. Greenberg, P.J. Birckbichler, R.H. Rice, Transglutaminases: Multifunctional cross-linking enzymes that stabilize tissues. FASEB J. 5, 3071–3077 (1991)CrossRefGoogle Scholar
  19. B. Hinz, G. Celetta, J.J. Tomasek, G. Gabbiani, C. Chaponnier, Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol. Biol. Cell 12, 2730–2741 (2001)CrossRefGoogle Scholar
  20. S.A. Irvine, A. Agrawal, B.H. Lee, H.Y. Chua, K.Y. Low, B.C. Lau, M. Machluf, S. Venkatraman, Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking. Biomed. Microdevices 17, 16 (2015)CrossRefGoogle Scholar
  21. H.R. Laube, J. Duwe, W. Rutsch, W. Konertz, Clinical experience with autologous endothelial cell-seeded polytetrafluoroethylene coronary artery bypass grafts. J. Thorac. Cardiovasc. Surg. 120, 134–141 (2000)CrossRefGoogle Scholar
  22. S.J. Lee, J. Liu, S.H. Oh, S. Soker, A. Atala, J.J. Yoo, Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 29, 2891–2898 (2008)CrossRefGoogle Scholar
  23. T.F. Luscher, M. Barton, 'Biology of the endothelium. Clin. Cardiol. 20, II-3-10 (1997)CrossRefGoogle Scholar
  24. R.A. McCloy, S. Rogers, C.E. Caldon, T. Lorca, A. Castro, A. Burgess, Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 13, 1400–1412 (2014)CrossRefGoogle Scholar
  25. T.K. Merceron, S.V. Murphy, in Anthony Atala and James J. Yoo (Eds.), Essentials of 3D Biofabrication and Translation. Hydrogels for 3D Bioprinting applications (Academic Press, Boston, 2015)Google Scholar
  26. D. Mondal, M. Griffith, S.S. Venkatraman, Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges. Int. J. Polym. Mater. Polym. Biomater. 65, 10 (2016)CrossRefGoogle Scholar
  27. L.P. Neff, B.W. Tillman, S.K. Yazdani, M.A. Machingal, J.J. Yoo, S. Soker, B.W. Bernish, R.L. Geary, G.J. Christ, Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo. J. Vasc. Surg. 53, 426–434 (2011)CrossRefGoogle Scholar
  28. H. Omidian, K. Park, Introduction to hydrogels. in, Biomedical applications of hydrogels handbook (Springer, 2010)Google Scholar
  29. S. Pashneh-Tala, S. MacNeil, F. Claeyssens, The Tissue-Engineered Vascular Graft-Past, Present, and Future (B Rev, Tissue Eng Part, 2015)Google Scholar
  30. F. Pati, J. Jang, W.L. J.W. Lee, D.W. Cho, Extrusion Bioprinting. In Anthony Atala and James J. Yoo (Eds.), Essentials of 3D Biofabrication and Translation (Academic Press, 2015)Google Scholar
  31. M. Prager-Khoutorsky, A. Lichtenstein, R. Krishnan, K. Rajendran, A. Mayo, Z. Kam, B. Geiger, A.D. Bershadsky, Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat. Cell Biol. 13, 1457–1465 (2011)CrossRefGoogle Scholar
  32. J. Puetz, M. A. Aegerter, Dip Coating Technique. in Michel A. Aegerter and Martin Mennig (eds.), Sol-Gel Technologies for Glass Producers and Users (Springer US: Boston, MA, 2004)Google Scholar
  33. S.S. Rensen, P.A. Doevendans, G.J. van Eys, Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. 15, 100–108 (2007)CrossRefGoogle Scholar
  34. J.A.G. Rhodin, Architecture of the Vessel Wall. In, Comprehensive Physiology (John Wiley & Sons, Inc., 2011)Google Scholar
  35. R.D. Sayers, S. Raptis, M. Berce, J.H. Miller, Long-term results of femorotibial bypass with vein or polytetrafluoroethylene. Br. J. Surg. 85, 934–938 (1998)CrossRefGoogle Scholar
  36. L.A. Schildmeyer, R. Braun, G. Taffet, M. Debiasi, A.E. Burns, A. Bradley, R.J. Schwartz, Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. FASEB J. 14, 2213–2220 (2000)CrossRefGoogle Scholar
  37. J.Y. Shen, M.B. Chan-Park, B. He, A.P. Zhu, X. Zhu, R.W. Beuerman, E.B. Yang, W. Chen, V. Chan, Three-dimensional microchannels in biodegradable polymeric films for control orientation and phenotype of vascular smooth muscle cells. Tissue Eng. 12, 2229–2240 (2006)CrossRefGoogle Scholar
  38. R.G. Thakar, Q. Cheng, S. Patel, J. Chu, M. Nasir, D. Liepmann, K. Komvopoulos, S. Li. Cell-shape regulation of smooth muscle cell proliferation. Biophys. J. 96, 3423–3432 (2009)CrossRefGoogle Scholar
  39. A. Tijore, P. Cai, M.H. Nai, L. Zhuyun, W. Yu, C.Y. Tay, C.T. Lim, X. Chen, L.P. Tan, Role of cytoskeletal tension in the induction of Cardiomyogenic differentiation in Micropatterned human mesenchymal stem cell. Adv Healthc Mater 4, 1399–1407 (2015)CrossRefGoogle Scholar
  40. A. Tijore, S. A. Irvine, U. Sarig, P. Mhaisalkar, V. Baisane, S. S. Venkatraman, Contact Guidance for Cardiac Tissue Engineering Using 3D Bioprinted Gelatin Patterned hydrogel, Biofabrication 10(2):025003 (2017)Google Scholar
  41. S.B.H. Timraz, I.A.H. Farhat, G. Alhussein, N. Christoforou, J.C.M. Teo, In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering. Exp. Cell Res. 343, 168–176 (2016)CrossRefGoogle Scholar
  42. E. Vatankhah, M.P. Prabhakaran, D. Semnani, S. Razavi, M. Morshed, S. Ramakrishna, Electrospun tecophilic/gelatin nanofibers with potential for small diameter blood vessel tissue engineering. Biopolymers 101, 1165–1180 (2014)CrossRefGoogle Scholar
  43. N.F. Worth, B.E. Rolfe, J. Song, G.R. Campbell, Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins. Cell Motil. Cytoskeleton 49, 130–145 (2001)CrossRefGoogle Scholar
  44. S.K. Yazdani, B. Watts, M. Machingal, Y.P. Jarajapu, M.E. Van Dyke, G.J. Christ, Smooth muscle cell seeding of decellularized scaffolds: The importance of bioreactor preconditioning to development of a more native architecture for tissue-engineered blood vessels. Tissue Eng. Part A 15, 827–840 (2009)CrossRefGoogle Scholar
  45. Y. He, F.F. Yang, H.M. Zhao, Q. Gao, B. Xia, F. JianZhong, Research on the printability of hydrogels in 3D bioprinting. Sci. Rep. 6, 29977 (2016)CrossRefGoogle Scholar
  46. X. Zhao, S.A. Irvine, A. Agrawal, Y. Cao, P.Q. Lim, S.Y. Tan, S.S. Venkatraman, 3D patterned substrates for bioartificial blood vessels - the effect of hydrogels on aligned cells on a biomaterial surface. Acta Biomater. 26, 159–168 (2015)CrossRefGoogle Scholar
  47. G.C. Zhu, Y.Q. Gu, X. Geng, Z.G. Feng, S.W. Zhang, L. Ye, Z.G. Wang, Experimental study on the construction of small three-dimensional tissue engineered grafts of electrospun poly-epsilon-caprolactone. J. Mater. Sci. Mater. Med. 26, 112 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ajay Tijore
    • 1
  • Jean-Marc Behr
    • 1
  • Scott Alexander Irvine
    • 1
  • Vrushali Baisane
    • 1
  • Subbu Venkatraman
    • 1
  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations