Closed loop control of microscopic particles incorporating steady streaming and visual feedback

  • Avi AbadiEmail author
  • Gabor Kosa


Automatic manipulation of microscopic particles is very important in biology, especially in new lab-on-chip systems for automatic testing and DNA manipulation. We suggest a particle manipulation system (PMS) based on vibrating piezoelectric beams creating steady streaming flow in a viscous liquid. The flow is nearly unidirectional and it is used to control the position and velocity of the particles in the workspace of the PMS. The particles position in the PMS are controlled by visual feedback. This study presents the manipulation method, the system’s model describing its behavior and characterizes experimentally its performance. The PMS is capable moving a 2-200 μm particle in a workspace of 8x8 mm2 with an absolute accuracy of 0.2 μm. The characteristic velocity in 500 cP Si oil, is 20 μm/s using an actuation voltage amplitude of 5 V and can reach 250 μm/s using 15 V respectively. We can also move a constellation of several particles in various sizes without changing the distance between them. The accuracy of the manipulation can be increased by enhancing the amplification of the microscope on the expanse of a smaller workspace field of view.


Micro-Fluidic Trapping Visual servoing Micro/nano robots Computer vision Piezoelectric actuation Micro-manipulation 



We wish to thank Dr. Roichman Yael for the assistance with the microscopy setup and to Amit Roni and Kamir Yossi for their support in this research

Supplementary material

10544_2018_271_MOESM1_ESM.mp4 (10.4 mb)
ESM 1 (MP4 10648 kb)


  1. A. Abadi, G. Kosa, IEEE/ASME Transactions on Mechatronics 21, 1528–1539 (2016)CrossRefGoogle Scholar
  2. D. Ahmed, T. Baasch, B. Jang, S. Pané, J. Dual, B.J. Nelson, Nano Letters (2016)Google Scholar
  3. R. Amit, A. Abadi, G. Kosa, Biomedical Microdevices 18, 1–19 (2016)CrossRefGoogle Scholar
  4. Y. Bar, Modeling of a 6 DOF Endoscop capsule for Medical Purposes, In Mechanical Eng. vol. M.Sc thesis Tel-Aviv, Israel: Tel-Aviv University, 2014.Google Scholar
  5. E.J. Beh, Journal of Statistical Planning and Inference 140, 2582–2588 (2010)MathSciNetCrossRefGoogle Scholar
  6. C. Bergeles, B.E. Kratochvil, B.J. Nelson, IEEE TRANSACTIONS ON ROBOTICS 28, 798–809 (2012)CrossRefGoogle Scholar
  7. J. Castillo, M. Dimaki, W.E. Svendsen, Integrative Biology 1, 30–42 (2009)CrossRefGoogle Scholar
  8. K. Chong, S.D. Kelly, S. Smith, J.D. Eldredge, Physics of Fluids 25, 033602 (2013)CrossRefGoogle Scholar
  9. B. Derby, Science 338, 921–926 (2012)CrossRefGoogle Scholar
  10. J.P. Desai, A. Pillarisetti, A.D. Brooks, Annual Review of Biomedical Engineering 9, 35–53 (2007)CrossRefGoogle Scholar
  11. E. Diller, J. Giltinan, G.Z. Lum, Z. Ye, M. Sitti, Robotics science and systems (2014)Google Scholar
  12. R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, NATURE 437, 862–865 (2005)CrossRefGoogle Scholar
  13. S. Floyd, C. Pawashe, M. Sitti, Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on, 419-424 (2008)Google Scholar
  14. B.M. Friedrich, I.H. Riedel-Kruse, J. Howard, F. Julicher, J Exp Biol 213, 1226–1234 (2010)CrossRefGoogle Scholar
  15. T. Fukuda, A. Fumihito, M. Nakajima, Micro-nanorobotic manipulation systems and their applications. Springer Science & Business Media (2013)Google Scholar
  16. V. Garcia-Gradilla, J. Orozco, S. Sattayasamitsathit, F. Soto, F. Kuralay, A. Pourazary, A. Katzenberg, W. Gao, Y. Shen, J. Wang, ACS Nano 7, 9232–9240 (2013)CrossRefGoogle Scholar
  17. S.P. Gioia Lucarini, A. Levi, B. Mazzolai, P. Dario, A. Menciassi, L. Beccai, IEEE Transactions on Automation Science and Engineering 3, 11 (2014)Google Scholar
  18. T. Hayakawa, S. Sakuma, F. Arai, On-chip 3D rotation of oocyte based on a vibration-induced local whirling flow. Microsyst. Nanoeng. 1, 15001 (2015)Google Scholar
  19. E. Hendarto, Y.B. Gianchandani, Journal of Micromechanics and Microengineering 21, 115028 (2013)CrossRefGoogle Scholar
  20. T.A. House, V.H. Lieu, D.T. Schwartz, Journal of Micromechanics and Microengineering 24, 045019 (2014)CrossRefGoogle Scholar
  21. H.-W. Huang, M.S. Sakar, A.J. Petruska, S. Pane, B. Nelson, Soft micromachines with programmable motility and morphology. J. Nat. Commun. 7, 12263 (2016)Google Scholar
  22. B. Jang, E. Gutman, N. Stucki, B.F. Seitz, P.D. Wendel-García, T. Newton, J. Pokki, O. Ergeneman, S. Pané, Y. Or, Nano Letters 15, 4829–4833 (2015)CrossRefGoogle Scholar
  23. I.S.M. Khalil, V. Magdanz, S. Sanchez, O.G. Schmidt, S. Misra, PLoS ONE 9, e83053 (2014)CrossRefGoogle Scholar
  24. V. Korzh, U. Strähle, Trends in Neurosciences 25, 603–605 (2002)CrossRefGoogle Scholar
  25. G. Kosa, M. Shoham, M. Zaaroor, IEEE Tansactions on Robotics 23, 137–150 (2007)CrossRefGoogle Scholar
  26. M.P. Kummer, J.J. Abbott, B.E. Kratochvil, R. Borer, A. Sengul, B.J. Nelson, Robotics. IEEE Transactions 26, 1006–1017 (2010)Google Scholar
  27. J.-S. Kwon, S.T. Wereley, Journal of Fluids Engineering 135, 021306 (2013)CrossRefGoogle Scholar
  28. B.R. Lutz, J. Chen, D.T. Schwartz, Analytical Chemistry 78, 5429–5435 (2006)CrossRefGoogle Scholar
  29. A.M. Maier, C. Weig, P. Oswald, E. Frey, P. Fischer, T. Liedl, Nano Letters 16, 906–910 (2016)CrossRefGoogle Scholar
  30. R.T. Mallea, A. Bolopion, J.-C. Beugnot, P. Lambert, M. Gauthier, IEEE/ASME Transactions on Mechatronics 22, 693–704 (2017)CrossRefGoogle Scholar
  31. O.M. Marago, P.H. Jones, P.G. Gucciardi, G. Volpe, A.C. Ferrari, Nat Nano 8, 807–819 (2013)CrossRefGoogle Scholar
  32. S. Martel, M. Mohammadi, O. Felfoul, Z. Lu, P. Pouponneau, The International Journal of Robotics Research 28, 571–582 (2009)CrossRefGoogle Scholar
  33. V. Marx, Nat Meth 12, 41–44 (2015)CrossRefGoogle Scholar
  34. R. Mhanna, F. Qiu, L. Zhang, Y. Ding, K. Sugihara, M. Zenobi-Wong, B.J. Nelson, Small 10, 1953–1957 (2014)CrossRefGoogle Scholar
  35. E.M. Munoz, J.E. Quispe, S. Regnier, E. Vela, Manipulation, Automation and Robotics at Small Scales (MARSS), 2017 International Conference on, 1-6 (2017)Google Scholar
  36. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annual Review of Biomedical Engineering 12, 55–85 (2010)CrossRefGoogle Scholar
  37. K.E. Peyer, L. Zhang, B.J. Nelson, Nanoscale 5, 1259–1272 (2013)CrossRefGoogle Scholar
  38. C. Qian, H. Huang, L. Chen, X. Li, Z. Ge, T. Chen, Z. Yang, L. Sun, International Journal of Molecular Sciences 15, 18281–18309 (2014)CrossRefGoogle Scholar
  39. M.A. Rahman, A.T. Ohta, 2017 I.E. 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 738-741Google Scholar
  40. M.A. Rahman, N. Takahashi, K.F. Siliga, N.K. Ng, Z. Wang, A.T. Ohta, Robotics and Biomimetics 4, 7 (2017)CrossRefGoogle Scholar
  41. J.H. Shin, J. Seo, J. Hong, S.K. Chung, Sensors and Actuators B: Chemical 246, 415–420 (2017)CrossRefGoogle Scholar
  42. E.B. Steager, M. Selman Sakar, C. Magee, M. Kennedy, A. Cowley, V. Kumar, The International Journal of Robotics Research 32, 346–359 (2013)CrossRefGoogle Scholar
  43. M. Tanyeri, C.M. Schroeder, Nano Letters 13, 2357–2364 (2013)CrossRefGoogle Scholar
  44. F. Ullrich, C. Bergeles, J. Pokki, O. Ergeneman, S. Erni, G. Chatzipirpiridis, S. Pané, C. Framme, B.J. Nelson, Investigative Ophthalmology & Visual Science 54, 2853–2863 (2013)CrossRefGoogle Scholar
  45. E. Vela, M. Hafez, S.p. Régnier, International Journal of Optomechatronics, 3, 289-302 (2009)Google Scholar
  46. J. Wang, W. Gao, ACS Nano 6, 5745–5751 (2012)CrossRefGoogle Scholar
  47. J. Wang, K.M. Manesh, Small 6, 338–345 (2010)CrossRefGoogle Scholar
  48. C. Wyatt Shields Iv, C.D. Reyes, G.P. Lopez, Lab on a Chip 15, 1230–1249 (2015)CrossRefGoogle Scholar
  49. T. Xu, J. Yu, X. Yan, H. Choi, L. Zhang, Micromachines 6, 1346–1364 (2015)CrossRefGoogle Scholar
  50. X. Zhang, L. Ma, Y. Zhang, Yale J Biol Med 86, 367–383 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical Engineering, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
  2. 2.Currently with the Department of Biomedical EngineeringUniversity of BaselAlschwillSwitzerland

Personalised recommendations