Advertisement

Design and performance evaluation of collision protection-based safety operation for a haptic robot-assisted catheter operating system

  • Linshuai Zhang
  • Shuxiang Guo
  • Huadong Yu
  • Yu Song
  • Takashi Tamiya
  • Hideyuki Hirata
  • Hidenori Ishihara
Article

Abstract

The robot-assisted catheter system can increase operating distance thus preventing the exposure radiation of the surgeon to X-ray for endovascular catheterization. However, few designs have considered the collision protection between the catheter tip and the vessel wall. This paper presents a novel catheter operating system based on tissue protection to prevent vessel puncture caused by collision. The integrated haptic interface not only allows the operator to feel the real force feedback, but also combines with the newly proposed collision protection mechanism (CPM) to mitigate the collision trauma. The CPM can release the catheter quickly when the measured force exceeds a certain threshold, so as to avoid the vessel puncture. A significant advantage is that the proposed mechanism can adjust the protection threshold in real time by the current according to the actual characteristics of the blood vessel. To verify the effectiveness of the tissue protection by the system, the evaluation experiments in vitro were carried out. The results show that the further collision damage can be effectively prevented by the CPM, which implies the realization of relative safe catheterization. This research provides some insights into the functional improvements of safe and reliable robot-assisted catheter systems.

Keywords

Robot-assisted catheter system Tissue protection Endovascular catheterization Safety operation Vascular interventional surgery (VIS) 

Notes

Acknowledgments

This research is partly supported by National High Tech. Research and Development Program of China (No.2015AA043202), and SPSKAKENHI Grant Number 15 K2120.

References

  1. F. Ahmadkhanlou, G.N. Washington, S.E. Bechtel, Modeling and control of single and two degree of freedom magnetorheological fluid-based haptic systems for telerobotic surgery. J. Intell. Mater. Syst. Struct. 20(10), 1171–1186 (2009)CrossRefGoogle Scholar
  2. A. Bettini, P. Marayong, S. Lang, A.M. Okamura, G.D. Hager, Vision-assisted control for manipulation using virtual fixtures. IEEE Trans. Robot. 20(6), 953–966 (2004)CrossRefGoogle Scholar
  3. J. Blake, H. Gurocak, Haptic glove with MR brakes for virtual reality. IEEE/ASME Trans. Mechatron. 14(5), 606–615 (2009)CrossRefGoogle Scholar
  4. N.A. Che Zakaria, T. Komeda, C.Y. Low, K. Mahadhir, Development of foolproof catheter guide system based on mechatronic design. Prod. Eng. 7(1), 81–90 (2013)CrossRefGoogle Scholar
  5. S. Condino, R. Piazza, F. Micheletti, F. Rossi, R. Pini, R. Berchiolli, A. Alberti, V. Ferrari, M. Ferrari, Electromagnetic guided in-situ laser fenestration of endovascular stent-graft: endovascular tools sensorization strategy and preliminary laser testing. Proceedings of the 2016 international conference on medical imaging and virtual reality (2016), pp. 72–83Google Scholar
  6. N. Deshpande, L. S. Mattos, D. G. Caldwell, New motorized micromanipulator for robot-assisted laser phonomicrosurgery. Proceedings of the 2015 I.E. International Conference on Robotics and Automation (2015), pp. 4755–4760Google Scholar
  7. Y. Fu, A. Gao, H. Liu, S. Guo, The master-slave catheterization system for positioning the steerable catheter. Int. J. Mechatron. Autom. 1(3–4), 143–152 (2011)CrossRefGoogle Scholar
  8. J. Guo, S. Guo, N. Xiao, X. Ma, S. Yoshida, T. Tamiya, M. Kawanishi, A novel robotic catheter system with force and visual feedback for vascular interventional surgery. Int. J. Mechatron. Autom. 2(1), 15–24 (2012)CrossRefGoogle Scholar
  9. J. Guo, S. Guo, L. Shao, P. Wang, Q. Gao, Design and performance evaluation of a novel robotic catheter system for vascular interventional surgery. Microsyst. Technol. 22(9), 2167–2176 (2015a)CrossRefGoogle Scholar
  10. J. Guo, L. Shao, S. Guo, Y. Yu, Q. Gao, A multidimensional informationmonitoring method for a novel robotic vascular interventional system. Proceedings of the 2015 I.E. international conference on information and automation (2015b), pp. 32–37Google Scholar
  11. J. Guo, S. Guo, T. Tamiya, H. Hirata, H. Ishihara, A virtual reality-based method of decreasing transmission time of visual feedback for a teleoperative robotic catheter operating system. Int. J. Med. Rob. Comput. Assisted Surg. 12(1), 32–45 (2016a)CrossRefGoogle Scholar
  12. J. Guo, S. Guo, Y. Yu, Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery. Biomed. Microdevices (2016b).  https://doi.org/10.1007/s10544-016-0100-0
  13. J. C. Gwilliam, M. Mahvash, B. Vagvolgyi, A. Vacharat, D. D. Yuh, A. M. Okamura, Effects of haptic and graphical force feedback on teleoperated palpation. Proceedings of the 2009 I.E. international conference on robotics and automation (2009), pp. 677–682Google Scholar
  14. P. Hlivák, H. Mlčochová, P. Peichl, R. Čihák, D. Wichterle, J. Kautzner, Robotic navigation in catheter ablation for paroxysmal atrial fibrillation: Midterm efficacy and predictors of Postablation arrhythmia recurrences. J. Cardiovasc. Electrophysiol. 22(5), 534–540 (2011)CrossRefGoogle Scholar
  15. E. Johnson, Y. Zhang, K. Shimada, Estimating an equivalent wall-thickness of a cerebral aneurysm through surface parameterization and a non-linear spring system. Int. J. Numer. Methods Biomed. Eng. 27(7), 1054–1072 (2011)CrossRefMATHGoogle Scholar
  16. E.M. Khan, W. Frumkin, G. Andre Ng, S. Neelagaru, F.M. Abi-Samra, et al., First experience with a novel robotic remote catheter system: Amigo™ mapping trial. J. Interv. Card. Electrophysiol. 37, 124–129 (2013)CrossRefGoogle Scholar
  17. M. Khoshnam, R.V. Patel, A pseudo-rigid-body 3R model for a steerable ablation catheter. Proceedings of the 2013 I.E. international conference on robotics and automation (2013), pp. 4427–4432Google Scholar
  18. J. Lenoir, S. Cotin, C. Duriez, P. Neumann, Interactive physically-based simulation of catheter and guidewire. Comput. Graph. 30(3), 416–422 (2006)CrossRefGoogle Scholar
  19. D. Lloyd-Jones, R. Adams, T. Brown, et al., Executive summary: Heart disease and stroke statistics-2010 update: A report from the American Heart Association. Circulation 121(7), 948–954 (2010)CrossRefGoogle Scholar
  20. X. Ma, S. Guo, N. Xiao, S. Yoshida, T. Tamiya, Evaluating performance of a novel developed robotic catheter manipulating system. J. Micro-Bio Robot. 8(3), 133–143 (2013)CrossRefGoogle Scholar
  21. A. Mohapatra, R. Greenberg, T. Mastracci, M. Eagleton, B. Thornsberry, Radiation exposure to operating room personnel and patients during endovascular procedures. J. Vasc. Surg. 58(3), 702–709 (2013)CrossRefGoogle Scholar
  22. G. Niemeyer, C. Preusche, G. Hirzinger, in Telerobotics. Spring handbook of robotics, ch. 31 (Springer-Verlag, New York, 2008), pp. 741–757Google Scholar
  23. A.M. Okamura, C. Simone, M.D. O’Leary, Force modeling for needle insertion into soft tissue. IEEE Trans. Biomed. Eng. 51(10), 1707–1716 (2004)CrossRefGoogle Scholar
  24. Y. Okumura, S.B. Johnson, T.J. Bunch, B.D. Henz, C.J. O’brien, D.L. Packer, A systematical analysis of in vivo contact forces on virtual catheter tip/tissue surface contact during cardiac mapping and intervention. J. Cardiovasc. Electrophysiol. 19(6), 632–640 (2008)CrossRefGoogle Scholar
  25. C. J. Payne, H. Rafii-Tari and G. Yang, A force feedback system for endovascular catheterisation. Proceedings of the 2012 IEEE/RSJ international conference on intelligent robots and systems (2013), pp. 1298–1304Google Scholar
  26. R. Piazza, S. Condino, A. Alberti, D. Giannetti, V. Ferrari, M. Gesi, M. Ferrari, Using of 3D virtual reality electromagnetic navigation for challenging cannulation in FEVAR procedure. Proceedings of the 2017 international conference on augmented reality, virtual reality and computer graphics (2017), pp. 221–229Google Scholar
  27. R. Rizzo, N. Sgambelluri, E. Scilingo, M. Raugi, A. Bicchi, Electromagnetic modeling and design of haptic interface prototypes based on magnetorheological fluids. IEEE Trans. Magn. 43(9), 3586–3600 (2007)CrossRefGoogle Scholar
  28. N. Sgambelluri, R. Rizzo, E. Scilingo, M. Raugi, A. Bicchi, Free hand haptic interfaces based on magneorheological fluids. Proceedings of 14th symposium on haptic interfaces for virtual environment and teleoperator systems (2006), pp. 367–371Google Scholar
  29. K. Takashima, R. Shimomura, T. Kitou, H. Terada, K. Yoshinaka, K. Ikeuchi, Contact and friction between catheter and blood vessel. Tribol. Int. 40(2), 319–328 (2007)CrossRefGoogle Scholar
  30. W. Tang, T. Wan, D.A. Gould, T. How, N.W. John, A stable and real-time nonlinear elastic approach to simulating guidewire and catheter insertions based on Cosserat rod. IEEE Trans. Biomed. Eng. 59(8), 2211–2218 (2012)CrossRefGoogle Scholar
  31. M. Tavallaei, D. Gelman, M. Lavdas, A. Skanes, D. Jones, J. Bax, M. Drangova, Design, development and evaluation of a compact telerobotic catheter navigation system. Int. J. Med. Rob. Comput. Assisted Surg. 12(3), 442–452 (2016)CrossRefGoogle Scholar
  32. T. Tsujita, K. Sase, A. Konno, M. Nakayama, X. Chen, K. Abe, M. Uchiyama, Design and evaluation of an encountered-type haptic interface using MR fluid for surgical simulators. Adv. Robot. 27(7), 525–540 (2013)CrossRefGoogle Scholar
  33. T. Wang, D. Zhang, L. Da, Remote-controlled vascular interventional surgery robot. Int. J. Med. Rob. Comput. Assisted Surg. 6(2), 194–201 (2010)Google Scholar
  34. Y. Wang, S. Guo, T. Tamiya, H. Hirata, H. Ishihara, X. Yin, A virtual-reality simulator and force sensation combined catheter operation training system and its preliminary evaluation. Int. J. Med. Rob. Comput. Assisted Surg. 13(3), e1769 (2016)CrossRefGoogle Scholar
  35. Y. Wang, S. Guo, Y. Li, T. Tamiya, Y. Song, Design and evaluation of safety operation VR training system for robotic catheter surgery. Med. Biol. Eng. Comput. (2017).  https://doi.org/10.1007/s11517-017-1666-2
  36. R. J. Webster III, J.S. Kim, N. J. Cowan, G. S. Chirikjian, A. M. Okamura, Nonholonomic modeling of needle steering, Int. J. Robot. Res., 25(5–6), 509–525 (2006)Google Scholar
  37. S. Willems, D. Steven, H. Servatius, B.A. Hoffmann, I. Drewitz, et al., Persistence of pulmonary vein isolation after robotic remote-navigated ablation for atrial fibrillation and its relation to clinical outcome. J. Cardiovasc. Electrophysiol. 21(10), 1079–1084 (2010)CrossRefGoogle Scholar
  38. X. Yin, S. Guo, H. Hirata, H. Ishihara, Design and experimental evaluation of teleoperated haptic robot-assisted catheter operating system. J. Intell. Mater. Syst. Struct. 27(1), 3–16 (2014)CrossRefGoogle Scholar
  39. X. Yin, S. Guo, N. Xiao, T. Tamiya, Safety operation consciousness realization of a MR fluids-based novel haptic Interface for Teleoperated catheter minimally invasive neuro surgery. IEEE/ASME Trans. Mechatron. 21(2), 1043–1054 (2015)CrossRefGoogle Scholar
  40. T. Yogesh, S. Jeffrey, W. David, D. Maria, Design and performance evaluation of a remote catheter navigation system. IEEE Trans. Biomed. Eng. 56(7), 1901–1908 (2009)CrossRefGoogle Scholar
  41. D. Zhang, T. Wang, D. Liu, G. Lin, Vascular deformation for vascular interventional surgery simulation. Int. J. Med. Rob. Comput. Assisted Surg. 6(2), 171–177 (2010)Google Scholar
  42. L. Zhang, S. Guo, H. Yu, Y. Song, Design and principle analysis for electromagnetic brake clamping mechanism of a novel slave manipulator. Proceedings of the 2016 I.E. international conference on mechatronics and automation (2016), pp. 490–495Google Scholar
  43. L. Zhang, S. Guo, H. Yu, Y. Song, Performance evaluation of a strain-gauge force sensor for a haptic robot-assisted catheter operating system. Microsyst. Technol. 23(10), 5041–5050 (2017a)CrossRefGoogle Scholar
  44. L. Zhang, S. Guo, H. Yu, S. Gu, Y. Song, M. Yu, Electromagnetic braking-based collision protection of a novel catheter manipulator. Proceedings of the 2017 I.E. international conference on mechatronics and automation (2017b), pp. 1726–1731Google Scholar
  45. C. Zhou, L. Xie, X. Shen, M. Luo, Z. Wu, L. Gu, Cardiovascular-interventional-surgery virtual training platform and its preliminary evaluation. Int. J. Med. Rob. Comput. Assisted Surg. 11(3), 375–387 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Linshuai Zhang
    • 1
    • 2
  • Shuxiang Guo
    • 1
    • 3
  • Huadong Yu
    • 2
  • Yu Song
    • 1
  • Takashi Tamiya
    • 4
  • Hideyuki Hirata
    • 1
  • Hidenori Ishihara
    • 1
  1. 1.Faculty of EngineeringKagawa UniversityTakamatsuJapan
  2. 2.School of Mechatronical EngineeringChangchun University of Science and TechnologyChangchunChina
  3. 3.Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, the Ministry of Industry Information Technology, School of Life ScienceBeijing Institute TechnologyBeijingChina
  4. 4.Department of Neurological Surgery, Faculty of MedicineKagawa UniversityTakamatsuJapan

Personalised recommendations