Advertisement

A practical approach for the optimization of channel integrity in the sealing of shallow microfluidic devices made from cyclic olefin polymer

  • Philipp Ganser
  • Christoph Baum
  • David Chargin
  • Alexis F. Sauer-Budge
  • Andre Sharon
Article

Abstract

A reduced channel height in microfluidic Lab-on-a-Chip (LOC) devices enables a reduction in the required volume of sample and reagents. LOC devices are most often manufactured by microstructuring a planar substrate and subsequently sealing it with a cover film. However, shallow chip designs, made from polymers, are sensitive to channel deformation during the sealing of the microfluidic device. Inappropriate bonding conditions often result in the loss of the microfluidic functionality. A systematic and practical approach for the identification of suitable bonding process parameters is missing. In this article, a straightforward approach for the optimization of channel integrity in the sealing of shallow microfluidic devices made from Cyclic Olefin Polymer (COP) is presented. Two COP materials were tested: COP Zeonex 690R (Glass transition temperature Tg = 135 °C) both as a cover film and substrate material, and COP ZF14 (Tg = 135 °C) as a film material. A mechanical analysis using microstructured Zeonex 690R substrates was performed to generate a matrix of low-distortion bonding parameters, including temperature, pressure and time. The well-established method of solvent-assisted bonding was used to enhance the characteristically low bond strengths of the native COP material. In addition, plasma-assisted bonding was tested and compared. The optimization approach was validated by the manufacture of a microfluidic test device, the demonstration of its microfluidic functionality, and the quantitative evaluation of the achieved channel integrity.

Keywords

Microfluidic device sealing Cyclic olefin polymer Solvent-assisted bonding Channel integrity 

Notes

Acknowledgments

We gratefully acknowledge the technical support of Dr. Xin Brown from the Biointerface Technologies Facility at Boston University, Boston, MA, USA. We thank Jennifer Campbell for manuscript and figure refinement. The project is financially supported by the European Union seventh framework programme (Contract No. 318088) and addresses the work topic "Smart components and smart systems integration - Micro-Nano Bio Systems (MNBS)".

References

  1. P. Abgrall, A.-M. Gué Journal of Micromechanics and Microengineering 17:R15 (2007)Google Scholar
  2. A. Bhattacharyya, C.M. Klapperich Lab Chip 7:876 (2007)Google Scholar
  3. L. Brown, T. Koerner, J.H. Horton, R.D. Oleschuk Lab Chip 6:66 (2006)Google Scholar
  4. F. Burgoyne, Lamination of plastic microfluidic devices. In Chips and Tips (2008) http://blogs.rsc.org/chipsandtips/2008/07/30/lamination-of-plastic-microfluidic-devices/?doing_wp_cron=1518528584.7893569469451904296875. Accessed 21 Feb 2018.
  5. B. Cortese, M.C. Mowlem, H. Morgan Sensors and Actuators B: Chemical 160:1473 (2011)Google Scholar
  6. B.L. Fernandez-Carballo, I. McGuiness, C. McBeth, M. Kalashnikov, S. Borros, A. Sharon, A.F. Sauer-Budge, Biomed. Microdevices 18, 34 (2016)CrossRefGoogle Scholar
  7. ISO 8510-1:1990 Adhesives – Peel test for a flexible-bonded-to-rigid test specimen assembly – Part 1: 90° peel. Google Scholar
  8. O. Geschke, H. Klank, P. Telleman, eds. Microsystem Engineering of Lab-on-a-chip devices, Wiley-VCH. (2008).Google Scholar
  9. C.S. Goh, S.C. Tan, K.T. May, C.Z. Chan, S.H. Ng, Adhesive bonding of polymeric microfluidic devices. in 11th Electronic Packaging Technology Conference, (Shagri-La Hotel, Singapore, 2009)Google Scholar
  10. F.-C. Huang, Y.-F. Chen, G.-B. Lee Electrophoresis 28:1130 (2007)Google Scholar
  11. R.K. Jena, C.Y. Yue, L. Anand Sensors and Actuators B: Chemical 157:518 (2011)Google Scholar
  12. R.K. Jena, S.A. Chester, V. Srivastava, C.Y. Yue, L. Anand, Y.C. Lam Sensors and Actuators B: Chemical 155:93 (2011)Google Scholar
  13. J. Kim, X. Xu Journal of Laser Applications 15, 255 (2003)CrossRefGoogle Scholar
  14. M. Laher, S. Hild, RSC Adv. 4, 5371 (2014)CrossRefGoogle Scholar
  15. K.F. Lei, S. Ahsan, N. Budraa, W.J. Li, J.D. Mai Sensors and Actuators A: Physical 114:340 (2004)Google Scholar
  16. S. Miserere, G. Mottet, V. Taniga, S. Descroix, J.-L. Viovy, L. Malaquin, Lab Chip 12, 1849 (2012)CrossRefGoogle Scholar
  17. P.S. Nunes, P.D. Ohlsson, O. Ordeig, J.P. Kutter, Microfluid. Nanofluid. 9, 145 (2010)CrossRefGoogle Scholar
  18. T. Park, I.H. Song, D.S. Park, B.H. You, M.C. Murphy Lab Chip 12:2799 (2012)Google Scholar
  19. K. Ren, Y. Chen, H. Wu Curr Opin Biotechnol 25, 78 (2014)CrossRefGoogle Scholar
  20. G. Rossi, P.A. Pincus, P.G. de Gennes Europhysics Letters 32:391 (1995)Google Scholar
  21. S. Roy, C.Y. Yue, Y.C. Lam Vacuum 85:1102 (2011)Google Scholar
  22. S. Roy, C.Y. Yue, S.S. Venkatraman, L.L. Ma Journal of Materials Chemistry 21:15031 (2011)Google Scholar
  23. A.F. Sauer-Budge, P. Mirer, A. Chatterjee, C.M. Klapperich, D. Chargin, A. Sharon, Lab Chip 9, 2803 (2009)CrossRefGoogle Scholar
  24. S. Senkbeil, Design and Fabrication of Polymer-Based Lab-on-a-Chip Devices towards Applications in Food and Environmental Analysis. Technical University of Denmark, (2012)Google Scholar
  25. J.Y. Shin, J.Y. Park, C. Liu, J. He, S.C. Kim Pure and Applied Chemistry 77:801 (2005)Google Scholar
  26. V. Srivastava, S.A. Chester, N.M. Ames, L. Anand International Journal of Plasticity 26, 1138 (2010)CrossRefGoogle Scholar
  27. I. Tahhan, Ein Beitrag zum wirtschaftlichen Fügen von mikrofluidischen Baugruppen (Albert Ludwigs University of Freiburg, 2009)Google Scholar
  28. Y. Temiz, R.D. Lovchik, G.V. Kaigala, E. Delamarche Microelectronic Engineering 132, 156 (2015)CrossRefGoogle Scholar
  29. R. Truckenmüller, R. Ahrens, Y. Cheng, G. Fischer, V. Saile, Sensors Actuators A Phys. 132, 385 (2006)CrossRefGoogle Scholar
  30. C.-W. Tsao, D.L. DeVoe Microfluidics and Nanofluidics 6:1 (2009)Google Scholar
  31. C.W. Tsao, L. Hromada, J. Liu, P. Kumar, D.L. DeVoe Lab Chip 7:499 (2007)Google Scholar
  32. K. Tsougeni, K. Ellinas, H. Archontaki, E. Gogolides, J. Micromech. Microeng. 25, 15005 (2015)CrossRefGoogle Scholar
  33. T.I. Wallow, A.M. Morales, B.A. Simmons, M.C. Hunter, K.L. Krafcik, L.A. Domeier, S.M. Sickafoose, K.D. Patel, A. Gardea, Lab Chip 7, 1825 (2007)CrossRefGoogle Scholar
  34. L. Yi, W. Xiaodong, Y. Fan, J. Mater. Process. Technol. 208, 63 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Philipp Ganser
    • 1
  • Christoph Baum
    • 1
  • David Chargin
    • 2
  • Alexis F. Sauer-Budge
    • 2
    • 3
    • 4
  • Andre Sharon
    • 2
    • 5
  1. 1.Fraunhofer Institute for Production Technology IPTAachenGermany
  2. 2.Center for Manufacturing Innovation, Fraunhofer USABrooklineUSA
  3. 3.Department of Biomedical EngineeringBoston UniversityBostonUSA
  4. 4.Exponent Inc.NatickUSA
  5. 5.Department of Mechanical EngineeringBoston UniversityBostonUSA

Personalised recommendations