A generic label-free microfluidic microobject sorter using a magnetic elastic diverter

  • Jiachen Zhang
  • Onaizah Onaizah
  • Amir Sadri
  • Eric DillerEmail author


Cell sorters play important roles in biological and medical applications, such as cellular behavior study and disease diagnosis and therapy. This work presents a label-free microfluidic sorter that has a downstream-pointing magnetic elastic diverter. Different with most existing magnetic sorters, the proposed device does not require the target microobjects to be intrinsically magnetic or coated with magnetic particles, giving users more flexibility in sorting criteria. The diverter is wirelessly deformed by an applied magnetic field, and its deformation induces a fluid vortex that sorts incoming microobjects, e.g., cells, to the collection outlet. The diverter does not touch samples in this process, reducing the sample contamination and damage risks. This sorter uses a magnetic field generated by off-chip electromagnetic coils that are centimeters away from the device. With simple structure and no on-chip circuits or coils, this device can be integrated with other lab-on-a-chip instruments in a sealed chip, ameliorating the safety concerns in handling hazardous samples. The parallel and independent control of two such diverters on a single chip were demonstrated, showing the potential of doubling the overall throughput or forming a two-stage cascaded sorter. The sorter was modeled based on the Euler-Bernoulli beam theory and its reliability was demonstrated by achieving a raw success rate of 96.68% in sorting 1506 registered microbeads. With a simple structure, the sorter is easy and cheap to fabricate. The advantages of the proposed sorter make it a promising multi-purpose sorting tool in both academic and industrial applications.


Microfluidic cell sorter Magnetic actuation Mechanical sorting Magnetic elastic composite Lab-on-a-chip 



The authors acknowledge the use of the Centre for Microfluidic Systems in Chemistry and Biology at the University of Toronto for providing equipment access.

Supplementary material

(MP4 3.45 MB)

(MP4 1.09 MB)

(MP4 3.44 MB)

10544_2017_183_MOESM4_ESM.pdf (1.6 mb)
(PDF 1.61 MB)


  1. J.D. Adams, U. Kim, H.T. Soh, Multitarget magnetic activated cell sorter. Proc. Natl. Acad. Sci. USA. 105(47), 18165–18170 (2008)CrossRefGoogle Scholar
  2. R.W. Applegate, J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, P. Bado, M.A. Dugan, A.A. Said, Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip. 6(3), 422–426 (2006)CrossRefGoogle Scholar
  3. B.J. Bain, I. Bates, M.A. Laffan, S.M. Lewis, Dacie and Lewis practical haematology (2011)Google Scholar
  4. C. Carr, M. Espy, P. Nath, S.L. Martin, M.D. Ward, J. Martin, Design, fabrication and demonstration of a magnetophoresis chamber with 25 output fractions. J. Magn. Magn. Mater. 321(10), 1440–1445 (2009)CrossRefGoogle Scholar
  5. C.H. Chen, S.H. Cho, F. Tsai, A. Erten, Y.H. Lo, Microfluidic cell sorter with integrated piezoelectric actuator. Biomed. Microdevices. 11(6), 1223–1231 (2009)CrossRefGoogle Scholar
  6. Y. Chen, A.J. Chung, T.H. Wu, M.A. Teitell, D. Di Carlo, P.Y. Chiou, Pulsed laser activated cell sorting with three dimensional sheathless inertial focusing. Small. 10(9), 1746–1751 (2014)CrossRefGoogle Scholar
  7. P.Y. Chiou, A.T. Ohta, M.C. Wu, Massively parallel manipulation of single cells and microparticles using optical images. Nature. 436(7049), 370–372 (2005)CrossRefGoogle Scholar
  8. S. Choi, S. Song, C. Choi, J.K. Park, Continuous blood cell separation by hydrophoretic filtration. Lab Chip. 7(11), 1532–1538 (2007)CrossRefGoogle Scholar
  9. D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. USA. 104(48), 18892–18897 (2007)CrossRefGoogle Scholar
  10. E. Diller, M. Sitti, Micro-scale mobile robotics. Found Trends Robot. 2(3), 143–259 (2011)CrossRefGoogle Scholar
  11. X. Ding, S.C.S. Lin, B. Kiraly, H. Yue, S. Li, I.K. Chiang, J. Shi, S.J. Benkovic, T.J. Huang, On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. Proc. Natl. Acad. Sci. USA. 109(28), 11105–11109 (2012)CrossRefGoogle Scholar
  12. M.D. Estes, J. Do, C.H. Ahn, On chip cell separator using magnetic bead-based enrichment and depletion of various surface markers. Biomed. Microdevices. 11(2), 509–515 (2009)CrossRefGoogle Scholar
  13. M.A. Faridi, H. Ramachandraiah, I. Iranmanesh, D. Grishenkov, M. Wiklund, A. Russom, MicroBubble activated acoustic cell sorting. Biomed. Microdevices. 19(2), 23 (2017)CrossRefGoogle Scholar
  14. J.Y. Gauthier, C. Lexcellent, A. Hubert, J. Abadie, N. Chaillet, Magneto-thermo-mechanical modeling of a magnetic shape memory alloy Ni-Mn-Ga single crystal. Ann. Solid Struct. Mech. 2(1), 19–31 (2011)CrossRefGoogle Scholar
  15. F. Guo, X.H. Ji, K. Liu, R.X. He, L.B. Zhao, Z.X. Guo, W. Liu, S.S. Guo, X.Z. Zhao, Droplet electric separator microfluidic device for cell sorting. Appl. Phys. Lett. 96(19). doi: 10.1063/1.3360812 (2010)
  16. C.T. Ho, R.Z. Lin, H.Y. Chang, C.H. Liu, Micromachined electrochemical T-switches for cell sorting applications. Lab Chip. 5(11), 1248–1258 (2005)CrossRefGoogle Scholar
  17. H.W. Hou, A.A.S. Bhagat, W.C. Lee, S. Huang, J. Han, C.T. Lim, Microfluidic devices for blood fractionation. Micromachines. 2(3), 319–343 (2011)CrossRefGoogle Scholar
  18. P. Howell, J. Golden, L. Hilliard, J. Erickson, D. Mott, F. Ligler, Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip. 8(7), 1097–1103 (2008)CrossRefGoogle Scholar
  19. S.C. Hur, N.K. Henderson-MacLennan, E.R.B. McCabe, D. Di Carlo, Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip. 11(5), 912–920 (2011)CrossRefGoogle Scholar
  20. D.W. Inglis, R. Riehn, R.H. Austin, J.C. Sturm, Continuous microfluidic immunomagnetic cell separation. Appl. Phys. Lett. 85(21), 5093–5095 (2004)CrossRefGoogle Scholar
  21. R. Johann, P. Renaud, A simple mechanism for reliable particle sorting in a microdevice with combined electroosmotic and pressure-driven flow. Electrophoresis. 25(21–22), 3720–3729 (2004)CrossRefGoogle Scholar
  22. I.D. Johnston, D.K. McCluskey, C.K.L. Tan, M.C. Tracey, Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24, 035017 (2014)CrossRefGoogle Scholar
  23. A. Lenshof, T. Laurell, Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39(3), 1203–1217 (2010)CrossRefGoogle Scholar
  24. S. Li, X. Ding, Z. Mao, Y. Chen, N. Nama, F. Guo, P. Li, L. Wang, C.E. Cameron, T.J. Huang, Standing surface acoustic wave (SSAW)-based cell waching. Lab Chip. 15, 331–338 (2015)CrossRefGoogle Scholar
  25. J. Lin, K. Owsley, M. Bahr, E. Diebold, D.D. Carlo, A frequency-multiplexed, microfluidic parallel flow cytometer for high-throughput screening. In: 20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 208–209 (2016)Google Scholar
  26. M. Liu, J. Sun, Y. Sun, C. Bock, Q. Chen, Thickness-dependent mechanical properties of polydimethylsiloxane membranes. J. Micromech. Microeng. 19(3), 035028 (2009)CrossRefGoogle Scholar
  27. M.P. MacDonald, G.C. Spalding, K. Dholakia, Microfluidic sorting in an optical lattice. Nature 426, 421–424 (2003)CrossRefGoogle Scholar
  28. D. Mattanovich, N. Borth, Applications of cell sorting in biotechnology. Microb. Cell Fact. 5(1), 12 (2006)CrossRefGoogle Scholar
  29. L. Mazutis, J. Gilbert, W.L. Ung, D.A. Weitz, A.D. Griffiths, J.A. Heyman, Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protocols. 8(5), 870–891 (2013)CrossRefGoogle Scholar
  30. B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.P. Renault, H. Rothuizen, H. Schmid, P. SchmidtWinkel, R. Stutz, H. Wolf, Printing meets lithography: soft approaches to high-resolution patterning (vol 45, pg 697, 2001). IBM J. Res. Dev. 45(6), 870 (2001)CrossRefGoogle Scholar
  31. B. Nelson, I. Kaliakatsos, J. Abbott, Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Eng. 12, 55–85 (2010)CrossRefGoogle Scholar
  32. J. Nguyen, Y. Wei, Y. Zheng, C. Wang, Y. Sun, On-chip sample preparation for complete blood count from raw blood. Lab Chip. 15(6), 1533–1544 (2015)CrossRefGoogle Scholar
  33. A.T. Ohta, P.Y. Chiou, T.H. Han, J.C. Liao, U. Bhardwaj, E.R.B. McCabe, F. Yu, R. Sun, M.C. Wu, Dynamic cell and microparticle control via optoelectronic tweezers. J. Microelectromech. Syst. 16(3), 491–499 (2007)CrossRefGoogle Scholar
  34. Q. Ramadan, V. Samper, D.P. Poenar, C. Yu, An integrated microfluidic platform for magnetic microbeads separation and confinement. Biosens. Bioelectron. 21(9), 1693–1702 (2006)CrossRefGoogle Scholar
  35. X. Ren, M. Bachman, C. Sims, G.P. Li, N. Allbritton, Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane). J. Chromatogr. B Biomed. Sci. Appl. 762(2), 117–125 (2001)CrossRefGoogle Scholar
  36. A. Russom, A.K. Gupta, S. Nagrath, D.D. Carlo, J.F. Edd, M. Toner, Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J Phys. 11(7), 075025 (2009)CrossRefGoogle Scholar
  37. L. Schmid, D. Weitz, T. Franke, Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip. 14(19), 3710–3718 (2014)CrossRefGoogle Scholar
  38. G.J. Shah, A.T. Ohta, E.P.Y. Chiou, M.C. Wu, C.J. Kim, EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. Lab Chip. 9(12), 1732–1739 (2009)CrossRefGoogle Scholar
  39. C. Wyatt Shields IV, C. Reyes, G. López, Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip. 15(5), 1230–1249 (2015)Google Scholar
  40. S.L. Stott, C.H.C.H. Hsu, D.I. Tsukrov, M. Yu, D.T. Miyamoto, Ba. Waltman, S.M. Rothenberg, A.M. Shah, M.E. Smas, G.K. Korir, F.P. Floyd, A.J. Gilman, J.B. Lord, D. Winokur, S. Springer, D. Irimia, S. Nagrath, L.V. Sequist, R.J. Lee, K.J. Isselbacher, S. Maheswaran, Da. Haber, M. Toner, Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA. 18(35), 392–397 (2010)Google Scholar
  41. P. Szaniszlo, N. Wang, M. Sinha, L.M. Reece, J.W. Van Hook, B. Luxon, J.F. Leary, Getting the right cells to the array: gene expression microarray analysis of cell mixtures and sorted cells. Cytometry A. 59, 191–202 (2004)CrossRefGoogle Scholar
  42. L. Wang, La. Flanagan, E. Monuki, N.L. Jeon, A.P. Lee, Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab Chip. 7(9), 1114–20 (2007)CrossRefGoogle Scholar
  43. X. Wang, S. Chen, M. Kong, Z. Wang, K. Costa, R. Li, D. Sun, Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip. 11, 3656–3662 (2011)CrossRefGoogle Scholar
  44. M.E. Warkiani, G. Guan, K.B. Luan, W.C. Lee, A.A.S. Bhagat, P.K. Chaudhuri, D.S.W. Tan, W.T. Lim, S.C. Lee, P.C.Y. Chen, C.T. Lim, J. Han, Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip. 14(1), 128–37 (2014)CrossRefGoogle Scholar
  45. H.W. Wu, X.Z. Lin, S.M. Hwang, G.B. Lee, A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures. Biomed Microdevices. 11(6), 1297–1307 (2009)CrossRefGoogle Scholar
  46. Y. Yamanishi, S. Sakuma, K. Onda, F. Arai, Powerful actuation of magnetized microtools by focused magnetic field for particle sorting in a chip. Biomed. Microdevices. 12, 745–752 (2010)CrossRefGoogle Scholar
  47. M. Zborowski, J.J. Chamers, Rare cell separation and analysis by magnetic sorting. Anal. Chem. 83(21), 8050–8056 (2011)CrossRefGoogle Scholar
  48. J. Zhang, E. Diller, Tetherless mobile micrograsping using a magnetic elastic composite material. Smart Mater. Struct. 25, 11LT03 (2016)CrossRefGoogle Scholar
  49. J. Zhang, P. Jain, E. Diller, Independent control of two millimeter-scale soft-bodied magnetic robotic swimmers. In: IEEE International Conference on Robotics and Automation, pp. 1933–1938 (2016)Google Scholar
  50. J. Zhang, O. Onaizah, K. Middleton, L. You, E. Diller, Reliable grasping of three-dimensional untethered mobile magnetic microgripper for autonomous pick-and-place. IEEE Robot. Autom. Lett. 2(2), 835–840 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jiachen Zhang
    • 1
  • Onaizah Onaizah
    • 1
  • Amir Sadri
    • 2
  • Eric Diller
    • 1
    Email author
  1. 1.Department of Mechanical & Industrial EngineeringUniversity of TorontoTorontoCanada
  2. 2.Bio-Rad Laboratories (Canada) Ltd.MississaugaCanada

Personalised recommendations