Advertisement

Microtubule shuttles on kinesin-coated glass micro-wire tracks

Abstract

Gliding of microtubule filaments on surfaces coated with the motor protein kinesin has potential applications for nano-scale devices. The ability to guide the gliding direction in three dimensions allows the fabrication of tracks of arbitrary geometry in space. Here, we achieve this by using kinesin-coated glass wires of micrometer diameter range. Unlike previous methods in which the guiding tracks are fixed on flat two-dimensional surfaces, the flexibility of glass wires in shape and size facilitates building in-vitro devices that have deformable tracks.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. A. Agarwal, H. Hess, Prog. Polym. Sci. 35, 252 (2010)

  2. P. Bieling, I.A. Telley, J. Piehler, T. Surrey, EMBO Rep. 9, 1121 (2008)

  3. K.M. Brendza, D.J. Rose, S.P. Gilbert, W.M. Saxton, J. Biol. Chem. 274, 31506 (1999)

  4. C. Brunner, C. Wahnes, V. Vogel, Lab Chip 7, 1263 (2007)

  5. K.-E. Byun, K. Heo, S. Shim, H.-J. Choi, S. Hong, Small 5, 2659 (2009)

  6. L.J. Cheng, M.T. Kao, E. Meyhofer, L.J. Guo, Small 1, 409 (2005)

  7. D. Chretien, S.D. Fuller, E. Karsenti, J. Cell Biol. 129, 1311 (1995)

  8. J. Clemmens, H. Hess, R. Lipscomb, Y. Hanein, K.F. Böhringer, C.M. Matzke, G.D. Bachand, B.C. Bunker, V. Vogel, Langmuir 19, 10967 (2003)

  9. S.A. Cohn, A.L. Ingold, J.M. Scholey, J. Biol. Chem. 264, 4290 (1989)

  10. D.L. Coy, M. Wagenbach, J. Howard, J. Biol. Chem. 274, 3667 (1999)

  11. T.J.A. Craddock, J.A. Tuszynski, D. Chopra, N. Casey, L.E. Goldstein, S.R. Hameroff, R.E. Tanzi, PLoS One 7, e33552 (2012)

  12. A. Desai, T.J. Mitchison, Annu. Rev. Cell Dev. Biol. 13, 83 (1997)

  13. H.H. Gerdes, R.N. Carvalho, Curr. Opin. Cell Biol. 20, 470 (2008)

  14. F. Gibbons, J.F. Chauwin, M. Desposito, J.V. Jose, Biophys. J. 80, 2515 (2001)

  15. B.J. Grant, D.M. Gheorghe, W. Zheng, M. Alonso, G. Huber, M. Dlugosz, J.A. McCammon, R.A. Cross, PLoS Biol. 9, e1001207 (2011)

  16. H. Hess, J. Clemmens, D. Qin, J. Howard, V. Vogel, Nano Lett. 1, 235 (2001)

  17. Y. Hiratsuka, T. Tads, K. Oiwa, T. Kanayama, T.Q.P. Uyeda, Biophys. J. 81, 1555 (2001)

  18. N. Hirokawa, Y. Noda, Y. Tanaka, S. Niwa, Nat. Rev. Mol. Cell Biol. 10, 682 (2009)

  19. J. Howard, A.J. Hudspeth, R.D. Vale, Nature 342, 154 (1989)

  20. W. Hwang, M.J. Lang, Cell Biochem. Biophys. 54, 11 (2009)

  21. W. Hwang, M.J. Lang, M. Karplus, Structure 16, 62 (2008)

  22. F. Kozielski, S. Sack, A. Marx, M. Thormählen, E. Schönbrunn, V. Biou, A. Thompson, E.M. Mandelkow, E. Mandelkow, Cell 91, 985 (1997)

  23. S.K. Lakkaraju, W. Hwang, Biophys. J. 101, 1105 (2011)

  24. L. Liu, E. Tuzel, J.L. Ross, J. Phys. Condens. Matter 23, 374104 (2011)

  25. A. Maloney, L.J. Herskowitz, S.J. Koch, PLoS One 6, e19522 (2011)

  26. A. Månsson, J. Muscle Res. Cell Motil. 33, 219 (2012)

  27. J.R. McIntosh, M.I. Molodtsov, F.I. Ataullakhanov, Q. Rev. Biophys. 45, 147 (2012)

  28. G. Muthukrishnan, Y. Zhang, S. Shastry, W.O. Hancock, Curr. Biol. 19, 442 (2009)

  29. F.J. Nedelec, T. Surrey, A.C. Maggs, S. Leibler, Nature 389, 305 (1997)

  30. J.A. Noel, W. Teizer, W. Hwang, ACS Nano 3, 1938 (2009)

  31. E. Nogales, M. Whittaker, R.A. Milligan, K.H. Downing, Cell 96, 79 (1999)

  32. D. Oliveira, D.-M. Kim, M. Umetsu, I. Kumagai, T. Adschiri, W. Teizer, J. Appl. Phys. 112, 124703 (2012)

  33. T. Ozeki, V. Verma, M. Uppalapati, Y. Suzuki, M. Nakamura, J.M. Catchmark, W.O. Hancock, Biophys. J. 96, 3305 (2009)

  34. O. Rath, F. Kozielski, Nat. Rev. 12, 527 (2012)

  35. V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Nature 467, 73 (2010)

  36. M.J. Schnitzer, S.M. Block, Nature 388, 386 (1997)

  37. A. Sikora, D. Oliveira, K. Kim, L.A. Liao, M. Umetsu, I. Kumagai, T. Adschiri, W. Hwang, W. Teizer, Chem. Lett. 41, 1215 (2012)

  38. A. Sikora, J. Ramón-Azcón, K. Kim, K. Reaves, H. Nakazawa, M. Umetsu, I. Kumagai, T. Adschiri, H. Shiku, T. Matsue, W. Hwang, W. Teizer, Nano Lett. 14, 876 (2014)

  39. Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté, K. Oiwa, Nature 483, 448 (2012)

  40. L. ten Sietoff, M. Lard, J. Generosi, H.S. Andersson, H. Linke, A. Månsson, Nano Lett. 14, 737 (2014)

  41. L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Nature 426, 816 (2003)

  42. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, Z. Ye, Opt. Express 14, 82 (2006)

  43. R.D. Vale, Cell 112, 467 (2003)

  44. R.D. Vale, R.A. Milligan, Science 288, 88 (2000)

  45. R.D. Vale, T.S. Reese, M.P. Sheetz, Cell 42, 39–50 (1985a)

  46. R.D. Vale, B.J. Schnapp, T.S. Reese, M.P. Sheetz, Cell 40, 559 (1985b)

  47. M.G.L. van den Heuvel, C. Dekker, Science 317, 333 (2007)

  48. M.G.L. van den Heuvel, M.P. de Graaff, C. Dekker, Science 312, 910 (2006)

  49. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shoches, Phys. Rev. Lett. 75, 1226 (1995)

  50. M. von Delius, D.A. Leigh, Chem. Soc. Rev. 40, 3656 (2011)

  51. R.C. Weisenberg, Science 177, 1104 (1972)

  52. R. Yokokawa, Y. Yoshida, S. Takeuchi, T. Kon, H. Fujita, Nanotechnology 17, 289 (2006)

  53. J. Zhou, P. Giannakakou, Curr. Med. Chem. 5, 65 (2005)

Download references

Acknowledgments

We gratefully acknowledge support from the World Premier International Research Center Initiative (WPI), MEXT, Japan. We would like to thank Dr. Hideaki Sanada for generously providing the kinesin plasmid.

Author information

Correspondence to Winfried Teizer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

A glass wire decorated by quantum dots in a buffer solution (Images ~100 μm × 100 μm in size). (MPG 2056 kb)

Microtubules gliding on the kinesin coated glass wire. The focus was adjusted occasionally in each movie (Images ~50 μm × 50 μm in size, actual elapsed time 4 min 32 s). (MPG 366 kb)

(MPG 362 kb)

(MPG 396 kb)

(MPG 414 kb)

(MPG 454 kb)

(MPG 670 kb)

(MPG 656 kb)

(MPG 280 kb)

(MPG 328 kb)

(MPG 550 kb)

Microtubules gliding on the kinesin coated surface of the coverslip (Images ~50 μm × 50 μm in size, actual elapsed time 4 min 32 s). (MPG 1438 kb)

Microtubules gliding towards two separate chip surfaces along the kinesin coated glass wire bridges (Images ~50 μm × 50 μm in size, time tagged on the images (min:sec)). (MPG 149 kb)

(MPG 1292 kb)

SM01

A glass wire decorated by quantum dots in a buffer solution (Images ~100 μm × 100 μm in size). (MPG 2056 kb)

SM02–SM11

Microtubules gliding on the kinesin coated glass wire. The focus was adjusted occasionally in each movie (Images ~50 μm × 50 μm in size, actual elapsed time 4 min 32 s). (MPG 366 kb)

(MPG 362 kb)

(MPG 396 kb)

(MPG 414 kb)

(MPG 454 kb)

(MPG 670 kb)

(MPG 656 kb)

(MPG 280 kb)

(MPG 328 kb)

(MPG 550 kb)

SM12

Microtubules gliding on the kinesin coated surface of the coverslip (Images ~50 μm × 50 μm in size, actual elapsed time 4 min 32 s). (MPG 1438 kb)

SM13 and SM14

Microtubules gliding towards two separate chip surfaces along the kinesin coated glass wire bridges (Images ~50 μm × 50 μm in size, time tagged on the images (min:sec)). (MPG 149 kb)

(MPG 1292 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Liao, A.L., Sikora, A. et al. Microtubule shuttles on kinesin-coated glass micro-wire tracks. Biomed Microdevices 16, 501–508 (2014) doi:10.1007/s10544-014-9852-6

Download citation

Keywords

  • Microtubule
  • Kinesin
  • Molecular motility
  • Glass micro-wire
  • Lab-on-a-chip
  • Molecular delivery