Biomedical Microdevices

, Volume 16, Issue 3, pp 465–478 | Cite as

The F-actin and adherence-dependent mechanical differentiation of normal epithelial cells after TGF-β1-induced EMT (tEMT) using a microplate measurement system

  • T. H. Wu
  • Y. W. Chiou
  • W. T. Chiu
  • M. J. Tang
  • C. H. Chen
  • Ming-Long YehEmail author


The epithelial to mesenchymal transition (EMT) is known to involve several physiological and pathological phenomena. In this study, we utilized a microplate measurement system (MMS) approach based on the deflection of a flexible micro-cantilever to measure cell stiffness (in Pa) and adhesion force (in nN) of a single cell during EMT with nN resolution. Our results demonstrated that after transforming growth factor-β1 (TGF-β1) induced EMT (tEMT), NMuMG cells became stiffer due to thicker and more abundant F-actin and displayed stronger vinculin accumulation after long-term cell-substrate adhesion. The MMS could distinguish differences in compressive stiffness (219 ± 10 and 287 ± 14 Pa), tensile stiffness (114 ± 14 and 132 ± 12 Pa), and adhesion force (150 ± 42 and 192 ± 31 nN) between cells before and after tEMT. However, without proper development of the F-actin structure and adequate adherent time, the mechanical differences were diminished. After tEMT, the cells with increased stiffness and a cell-substrate adhesion force benefited by migrating more rapidly and had more invasiveness. Thus, this technology has the potential to benefit research focused on cancer diagnosis, drug development, and cell-substrate interactions.


Epithelial to mesenchymal transitions (EMT) Normal marine mammary gland cells (NMuMG) Transforming growth factor-β1 (TGF-β1) Atomic force microscopy (AFM) Cell stiffness Adhesion force 



The authors acknowledge financial support from the National Science Council of Taiwan (98-2627-B-006-009-, 99-2627-B-006-009-, 100-2627-B-006-009-).

Supplementary material

10544_2014_9849_MOESM1_ESM.docx (348 kb)
Figure S1 (DOCX 347 kb)
10544_2014_9849_MOESM2_ESM.docx (736 kb)
Figure S2 (DOCX 736 kb)
Supplementary Video 1

(AVI 24023 kb)

Supplementary Video 2

(AVI 26634 kb)

10544_2014_9849_MOESM5_ESM.docx (22 kb)
Supplementary Table 1 (DOCX 22 kb)


  1. A. Albini, Y. Iwamoto, H.K. Kleinman, G.R. Martin, S.A. Aaronson, J.M. Kozlowski, R.N. McEwan, Cancer Res. 47, 3239 (1987)Google Scholar
  2. R.C. Bates et al., J. Clin. Investig. 115, 339 (2005)CrossRefGoogle Scholar
  3. J.R. Beach et al., Proc. Natl. Acad. Sci. U. S. A. 108, 17991 (2011)CrossRefGoogle Scholar
  4. W. Birchmeier, EMBO Rep. 6, 413 (2005)CrossRefGoogle Scholar
  5. M.A. Brown, C.S. Wallace, C.C. Anamelechi, E. Clermont, W.M. Reichert, G.A. Truskey, Biomaterials 28, 3928 (2007)CrossRefGoogle Scholar
  6. S.T. Buckley, C. Medina, A.M. Davies, C. Ehrhardt, Nanomedicine 8, 355 (2012)CrossRefGoogle Scholar
  7. D. Buergy, F. Wenz, C. Groden, M.A. Brockmann, Int. J. Cancer 130, 2747 (2012)CrossRefGoogle Scholar
  8. E. Canetta, A. Duperray, A. Leyrat, C. Verdier, Biorheology 42, 321 (2005)Google Scholar
  9. O. Chaudhuri, S.H. Parekh, W.A. Lam, D.A. Fletcher, Nat. Methods 6, 383 (2009)CrossRefGoogle Scholar
  10. J. Chen, H. Li, N. SundarRaj, J.H. Wang, Cell Motil. Cytoskeleton 64, 248 (2007)CrossRefGoogle Scholar
  11. C.-C. Chen, P.C.-H. Hsieh, G.-M. Wang, W.-C. Chen, M.-L. Yeh, Mater. Let. 63, 1872 (2009)Google Scholar
  12. Y.S. Chu, W.A. Thomas, O. Eder, F. Pincet, E. Perez, J.P. Thiery, S. Dufour, J. Cell Biol. 167, 1183 (2004)CrossRefGoogle Scholar
  13. M.J. Colbert, F. Brochard-Wyart, C. Fradin, K. Dalnoki-Veress, Biophys. J. 99, 3555 (2010)CrossRefGoogle Scholar
  14. S.E. Cross, Y.S. Jin, J. Tondre, R. Wong, J. Rao, J.K. Gimzewski, Nanotechnology 19, 384003 (2008)CrossRefGoogle Scholar
  15. S.E. Cross, Y.S. Jin, Q.Y. Lu, J. Rao, J.K. Gimzewski, Nanotechnology 22, 215101 (2011)CrossRefGoogle Scholar
  16. N. Desprat, A. Guiroy, A. Asnacios, Rev. Sci. Instrum. 77, 055111 (2006)CrossRefGoogle Scholar
  17. D. Docheva, D. Padula, M. Schieker, H. Clausen-Schaumann, Biochem. Biophys. Res. Commun. 402, 361 (2010)CrossRefGoogle Scholar
  18. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126, 677 (2006)CrossRefGoogle Scholar
  19. J. Friedrichs et al., J. Biol. Chem. 282, 29375 (2007)CrossRefGoogle Scholar
  20. J. Friedrichs, J. Helenius, D.J. Muller, Nat. Protoc. 5, 1353 (2010a)CrossRefGoogle Scholar
  21. J. Friedrichs, J. Helenius, D.J. Muller, Proteomics 10, 1455 (2010b)CrossRefGoogle Scholar
  22. J. Friedrichs, A. Zieris, S. Prokoph, C. Werner, Macromol. Rapid Commun. 33, 1453 (2012)CrossRefGoogle Scholar
  23. J. Friedrichs, K.R. Legate, R. Schubert, M. Bharadwaj, C. Werner, D.J. Muller, M. Benoit, Methods 60, 169 (2013a)CrossRefGoogle Scholar
  24. J. Friedrichs, C. Werner, D.J. Muller, Methods Mol. Biol. 1046, 19 (2013b)CrossRefGoogle Scholar
  25. A. Fuhrmann, J.R. Staunton, V. Nandakumar, N. Banyai, P.C. Davies, R. Ros, Phys. Biol. 8, 015007 (2011)CrossRefGoogle Scholar
  26. N.D. Gallant, K.E. Michael, A.J. Garcia, Mol. Biol. Cell 16, 4329 (2005)CrossRefGoogle Scholar
  27. S. Giampieri, C. Manning, S. Hooper, L. Jones, C.S. Hill, E. Sahai, Nat. Cell Biol. 11, 1287 (2009)CrossRefGoogle Scholar
  28. F. Guilak, V.C. Mow, J. Biomech. 33, 1663 (2000)CrossRefGoogle Scholar
  29. T. Itabashi et al., Nat. Methods 6, 167 (2009)CrossRefGoogle Scholar
  30. A. Kabashima et al., Int. J. Cancer 124, 2771 (2009)CrossRefGoogle Scholar
  31. D.H. Kim, S.B. Khatau, Y. Feng, S. Walcott, S.X. Sun, G.D. Longmore, D. Wirtz, Sci. Rep. 2, 555 (2012)Google Scholar
  32. M. Labelle, S. Begum, R.O. Hynes, Cancer Cell 20, 576 (2011)CrossRefGoogle Scholar
  33. W.A. Lam, M.J. Rosenbluth, D.A. Fletcher, Br. J. Haematol. 142, 497 (2008)CrossRefGoogle Scholar
  34. J. Lee, M. Leonard, T. Oliver, A. Ishihara, K. Jacobson, J. Cell Biol. 127, 1957 (1994)CrossRefGoogle Scholar
  35. M.J. Lee, J. Kim, K.I. Lee, J.M. Shin, J.I. Chae, H.M. Chung, Cytotherapy 13, 165 (2011)CrossRefGoogle Scholar
  36. M. Lekka, P. Laidler, Nat. Nanotechnol. 4, 72 (2009). author reply 72CrossRefGoogle Scholar
  37. F. Li, S.D. Redick, H.P. Erickson, V.T. Moy, Biophys. J. 84, 1252 (2003)CrossRefGoogle Scholar
  38. M.M. Lotz, C.A. Burdsal, H.P. Erickson, D.R. McClay, J. Cell Biol. 109, 1795 (1989)CrossRefGoogle Scholar
  39. S.A. Mani et al., Cell 133, 704 (2008)CrossRefGoogle Scholar
  40. J.C. Martens, M. Radmacher, Pflugers Arch. - Eur. J. Physiol. 456, 95 (2008)CrossRefGoogle Scholar
  41. T.S. Matsui, S. Deguchi, N. Sakamoto, T. Ohashi, M. Sato, Biorheology 46, 401 (2009)Google Scholar
  42. P.J. Miettinen, R. Ebner, A.R. Lopez, R. Derynck, J. Cell Biol. 127(6 Pt 2), 2021 (1994)CrossRefGoogle Scholar
  43. D. Mitrossilis, J. Fouchard, A. Guiroy, N. Desprat, N. Rodriguez, B. Fabry, A. Asnacios, Proc. Natl. Acad. Sci. U. S. A. 106, 18243 (2009)CrossRefGoogle Scholar
  44. D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, A. Asnacios, Proc. Natl. Acad. Sci. U. S. A. 107, 16518 (2010)CrossRefGoogle Scholar
  45. M. Mori et al., Mol. Biol. Cell 20, 3115 (2009)CrossRefGoogle Scholar
  46. K. Nagayama, S. Yanagihara, T. Matsumoto, Med. Eng. Phys. 29, 620 (2007)CrossRefGoogle Scholar
  47. R.M. Nerem, Adv. Exp. Med. Biol. 534, 1 (2003)CrossRefGoogle Scholar
  48. G. Ofek, D.C. Wiltz, K.A. Athanasiou, Biophys. J. 97, 1873 (2009)CrossRefGoogle Scholar
  49. C. Rotsch, M. Radmacher, Biophys. J. 78, 520 (2000)CrossRefGoogle Scholar
  50. A. Saterbak, D.A. Lauffenburger, Biotechnol. Prog. 12, 682 (1996)CrossRefGoogle Scholar
  51. S. Sen, S. Kumar, Cell. Mol. Bioeng. 2, 218 (2009)CrossRefGoogle Scholar
  52. Y. Shen, M. Nakajima, S. Kojima, M. Homma, T. Fukuda, Biochem. Biophys. Res. Commun. 409, 160 (2011)CrossRefGoogle Scholar
  53. J. Solon, I. Levental, K. Sengupta, P.C. Georges, P.A. Janmey, Biophys. J. 93, 4453 (2007)CrossRefGoogle Scholar
  54. D.A. Starr, M. Han, J. Cell Sci. 116, 211 (2003)CrossRefGoogle Scholar
  55. M.P. Stewart, J. Helenius, Y. Toyoda, S.P. Ramanathan, D.J. Muller, A.A. Hyman, Nature 469, 226 (2011)CrossRefGoogle Scholar
  56. S. Suresh, Nat. Nanotechnol. 2, 748 (2007)CrossRefMathSciNetGoogle Scholar
  57. V. Swaminathan, K. Mythreye, E.T. O’Brien, A. Berchuck, G.C. Blobe, R. Superfine, Cancer Res. 71, 5075 (2011)CrossRefGoogle Scholar
  58. A. Taubenberger, D.A. Cisneros, J. Friedrichs, P.H. Puech, D.J. Muller, C.M. Franz, Mol. Biol. Cell 18, 1634 (2007)CrossRefGoogle Scholar
  59. A.V. Taubenberger, D.W. Hutmacher, D.J. Muller, Tissue Eng. B Rev. 20, 40 (2014)Google Scholar
  60. G. Thoelking, B. Reiss, J. Wegener, H. Oberleithner, H. Pavenstaedt, C. Riethmuller, Nanotechnology 21, 265102 (2010)CrossRefGoogle Scholar
  61. O. Thoumine, A. Ott, D. Louvard, Cell Motil. Cytoskeleton 33, 276 (1996)CrossRefGoogle Scholar
  62. Q. Tseng et al., Lab Chip 11, 2231 (2011)CrossRefGoogle Scholar
  63. C.E. Turner, J.R. Glenney Jr., K. Burridge, J. Cell Biol. 111, 1059 (1990)CrossRefGoogle Scholar
  64. S. Vichare, M.M. Inamdar, S. Sen, Soft Matter, (2012a).Google Scholar
  65. S. Vichare, M.M. Inamdar, S. Sen, Soft Matter 8, 10464 (2012b)CrossRefGoogle Scholar
  66. X. Wang, S. Cooper, Tissue Eng. A 19, 1113 (2012)CrossRefGoogle Scholar
  67. N. Wang, I.M. Tolic-Norrelykke, J. Chen, S.M. Mijailovich, J.P. Butler, J.J. Fredberg, D. Stamenovic, Am. J. Physiol. Cell Physiol. 282, C606 (2002)CrossRefGoogle Scholar
  68. N. Wang, J.D. Tytell, D.E. Ingber, Nat. Rev. Mol. Cell Biol. 10, 75 (2009)CrossRefGoogle Scholar
  69. C.C. Wu, H.W. Su, C.C. Lee, M.J. Tang, F.C. Su, Biochem. Biophys. Res. Commun. 329, 256 (2005)CrossRefGoogle Scholar
  70. T.-H. Wu, C.-H. Li, M.-J. Tang, J.-I. Liang, C.-H. Chen, M.-L. Yeh, Cell Commun. Adhes. 20, 115 (2013).Google Scholar
  71. J. Zavadil, E.P. Bottinger, Oncogene 24, 5764 (2005)CrossRefGoogle Scholar
  72. J. Zavadil et al., Proc. Natl. Acad. Sci. U. S. A. 98, 6686 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • T. H. Wu
    • 1
  • Y. W. Chiou
    • 1
  • W. T. Chiu
    • 1
  • M. J. Tang
    • 2
  • C. H. Chen
    • 3
  • Ming-Long Yeh
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringNational Cheng Kung UniversityTainan CityTaiwan
  2. 2.Institute of PhysiologyNational Cheng Kung UniversityTainanTaiwan
  3. 3.Department of RehabilitationKaohsiung Municipal Ta-Tung HospitalKaohsiungTaiwan

Personalised recommendations