Skip to main content
Log in

Polymeric microfluidic devices exhibiting sufficient capture of cancer cell line for isolation of circulating tumor cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Here, we developed polymeric microfluidic devices for the isolation of circulating tumor cells. The devices, with more than 30,000 microposts in the channel, were produced successfully by a UV light-curing process lasting 3 min. The device surface was coated with anti-epithelial cell adhesion molecule antibody by just contacting the antibody solution, and a flow system including the device was established to send a cell suspension through it. We carried out flow tests for evaluation of the device’s ability to capture tumor cells using an esophageal cancer cell line, KYSE220, dispersed in phosphate-buffered saline or mononuclear cell separation from whole blood. After the suspension flowed through the chip, many cells were seen to be captured on the microposts coated with the antibody, whereas there were few cells in the device without the antibody. Owing to the transparency of the device, we could observe the intact and the stained cells captured on the microposts by transmitted light microscopy and phase contrast microscopy, in addition to fluorescent microscopy, which required fluorescence labeling. Cell capture efficiencies (i.e., recovery rates of the flowing cancer cells by capture with the microfluidic device) were measured. The resulting values were 0.88 and 0.95 for cell suspension in phosphate-buffered saline, and 0.85 for the suspension in the mononuclear cell separation, suggesting the sufficiency of this device for the isolation of circulating tumor cells. Therefore, our device may be useful for research and treatments that rely on investigation of circulating tumor cells in the blood of cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • M. Alunni-Fabbroni, M.T. Sandri, Methods 50, 289 (2010)

    Article  Google Scholar 

  • I. Desitter, B.S. Guerrouahen, N. Benali-Furet, J. Wechsler, P.A. Janne, Y. Kuan, M. Yanagita, L. Wang, J.A. Berkowitz, R.J. Distel, Y.E. Cayre, Anticancer. Res. 31, 427 (2011)

    Google Scholar 

  • M.N. Dickson, P. Tsinberg, Z. Tang, F.Z. Bischoff, T. Wilson, E.F. Leonard, Biomicrofluidics 5, 034119 (2011)

    Article  Google Scholar 

  • E. Dotan, S.J. Cohen, K.R. Alpaugh, N.J. Meropol, Oncologist 14, 1070 (2009)

    Article  Google Scholar 

  • G.S. Fiorini, D.T. Chiu, Biotechniques 38, 429 (2005)

    Article  Google Scholar 

  • J. Hou, M.G. Krebs, L. Lancashire, R. Sloane, A. Backen, R.K. Swain, L.J.C. Priest, A. Greystoke, C. Zhou, K. Morris, T. Ward, F.H. Blackhall, C. Dive, J. Clin. Oncol. 30, 525 (2012)

    Article  Google Scholar 

  • M. Iwatsuki, K. Mimori, T. Yokobori, H. Ishi, T. Beppu, S. Nakamori, H. Baba, M. Mori, Cancer Sci. 101, 293 (2010)

    Article  Google Scholar 

  • J. Kaganoi, Y. Shimada, M. Kano, T. Okumura, G. Watanabe, M. Imamura, Br. J. Surg. 91, 1055 (2004)

    Article  Google Scholar 

  • H.K. Lin, S. Zheng, A.J. Williams, M. Balic, S. Groshen, H.I. Scher, M. Fleisher, W. Stadler, R.H. Datar, Y. Tai, R.J. Cote, Clin. Cancer Res. (2010). doi:10.1158/1078-0432.CCR-10-1105

  • S. Nagrath, L.V. Sequist, S. Maheswaran, D.W. Bell, D. Irimia, L. Ulkus, M.R. Smith, E.L. Kwak, S. Digumarthy, A. Muzikansky, P. Ryan, U.J. Balis, R.G. Tompkins, D.A. Haber, M. Toner, Nature Lett. 450, 1235 (2007)

    Article  Google Scholar 

  • C.V. Pecot, F.Z. Bischoff, J.A. Mayer, K.L. Wong, T. Pham, J. Bottsford-Miller, R.L. Stone, Y.G. Lin, P. Jaladurgam, J.W. Roh, B.W. Goodman, W.M. Merritt, T.J. Pircher, S.D. Mikolajczyk, A.M. Nick, J. Celestino, C. Eng, L.M. Ellis, M.T. Deavers, A.K. Sood, Cancer Discov. 1, 580 (2011)

    Article  Google Scholar 

  • P. Pilati, S. Mocellin, L. Bertazza, F. Galdi, M. Briarava, E. Mammano, E. Tessari, G. Zavagno, D. Nitti, Ann. Surg. Oncol. 19, 402 (2012)

    Article  Google Scholar 

  • Y. Shimada, M. Imamura, T. Wagata, N. Yamaguchi, T. Tobe, Cancer 69, 277 (1992)

    Article  Google Scholar 

  • M. Takakura, S. Kyo, M. Nakamura, Y. Maida, Y. Mizumoto, Y. Bono, X. Zhang, Y. Hashimoto, Y. Urata, T. Fujiwara, M. Inoue, Br. J. Cancer 107, 448 (2012)

    Article  Google Scholar 

  • T. Xu, B. Lu, Y. Tai, A. Goldkorn, Cancer Res. 70, 6420 (2010)

    Article  Google Scholar 

  • H.K. Zheng, B. Lin, A. Lu, R. Williams, R.J. Datar, Y. Cote, Tai, Biomed Microdevices (2011). doi:10.1007/s10544-010-9485-3

Download references

Acknowledgments

This study was supported by Grant-in-Aid for Scientific Research (22500422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Ohnaga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MPG 8822 kb)

(MPG 30048 kb)

(MPG 8526 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohnaga, T., Shimada, Y., Moriyama, M. et al. Polymeric microfluidic devices exhibiting sufficient capture of cancer cell line for isolation of circulating tumor cells. Biomed Microdevices 15, 611–616 (2013). https://doi.org/10.1007/s10544-013-9775-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9775-7

Keywords

Navigation