Advertisement

Biomedical Microdevices

, Volume 15, Issue 5, pp 859–865 | Cite as

Quantifying continuous-flow dielectrophoretic trapping of cells and micro-particles on micro-electrode array

  • Lichen Rozitsky
  • Amir Fine
  • Dekel Dado
  • Shahar Nussbaum-Ben-Shaul
  • Shulamit Levenberg
  • Gilad YossifonEmail author
Article

Abstract

An interdigitated electrode array embedded within a micro-channel with forced flow is shown to enable dielectrophoretic (DEP) characterization of particles and/or cells based on measurements of their trapping percentage over a continuous frequency range. A simplified model of the trapping percentage, using spatial averaging of the convective and DEP force, linearly correlated it to the effective DEP force (in its positive mode). Thus, the Clausius–Mossotti factor was fitted to the experimental data, yielding effective electrical characteristics of the particles and/or cells. Also, the generated trapping percentage curve response over a continuous range of frequencies facilitates sorting and detection based on differences other than just the cross-over frequencies.

Keywords

Dielectrophoresis Microfluidics Microelectrodes 

Notes

Acknowledgments

The research was supported by MOST – Tashtiyot grant #880011. The fabrication of the chip was possible through the financial and technical support of the Technion RBNI (Russell Berrie Nanotechnology Institute) and MNFU (Micro Nano Fabrication Unit). We wish to acknowledge Yoni Shemesh, Vitali Plaei, Alicia Boymelgreen and Yoav Green for their valuable input.

Supplementary material

10544_2013_9773_MOESM1_ESM.doc (126 kb)
ESM 1 (DOC 125 kb)
ESM 2

(WMV 3104 kb)

References

  1. F. Aldaeus, Y. Lin, J. Roeraade, G. Amberg, Electrophoresis 26, 4252 (2005)CrossRefGoogle Scholar
  2. A. Castellanos, A. Ramos, A. González, N.G. Green, H. Morgan, J. Phys. Appl. Phys. 36, 2584 (2003)CrossRefGoogle Scholar
  3. I.-F. Cheng, H.-C. Chang, D. Hou, H.-C. Chang, Biomicrofluidics 1, 021503 (2007)CrossRefGoogle Scholar
  4. D.S. Clague, E.K. Wheeler, Phys. Rev. E 64, 026605 (2001)CrossRefGoogle Scholar
  5. L.A. Flanagan, J. Lu, L. Wang, S.A. Marchenko, N.L. Jeon, A.P. Lee, E.S. Monuki, Stem Cells 26, 656 (2008)CrossRefGoogle Scholar
  6. Z.R. Gagnon, Electrophoresis 32, 2466 (2011)CrossRefGoogle Scholar
  7. P. García-Sánchez, Y. Ren, J.J. Arcenegui, H. Morgan, A. Ramos, Langmuir 28, 13861 (2012)CrossRefGoogle Scholar
  8. N.G. Green, A. Ramos, H. Morgan, J. Electrost. 56, 235 (2002)CrossRefGoogle Scholar
  9. K.F. Hoettges, Y. Hubner, L.M. Broche, S.L. Ogin, G.E.N. Kass, M.P. Hughes, Anal. Chem. 80, 2063 (2008)CrossRefGoogle Scholar
  10. T. Honegger, K. Berton, E. Picard, D. Peyrade, Appl. Phys. Lett. 98, 181906 (2011)CrossRefGoogle Scholar
  11. M.P. Hughes, Electrophoresis 23, 2569 (2002)CrossRefGoogle Scholar
  12. T.B. Jones, Electromechanics of Particles (Cambridge University Press, 2005).Google Scholar
  13. M. Khoury, A. Bransky, N. Korin, L.C. Konak, G. Enikolopov, I. Tzchori, S. Levenberg, Biomed. Microdevices 12, 1001 (2010)CrossRefGoogle Scholar
  14. F.H. Labeed, J. Lu, H.J. Mulhall, S.A. Marchenko, K.F. Hoettges, L.C. Estrada, A.P. Lee, M.P. Hughes, L.A. Flanagan, PLoS One 6, e25458 (2011)CrossRefGoogle Scholar
  15. H. Li, R. Bashir, Biomed. Microdevices 6, 289 (2004)CrossRefGoogle Scholar
  16. W.H. Li, H. Du, D.F. Chen, C. Shu, Comput. Mater. Sci. 30, 320 (2004)CrossRefGoogle Scholar
  17. H. Li, Y. Zheng, D. Akin, R. Bashir, J. Microelectromech. Syst. 14, 103 (2005)CrossRefGoogle Scholar
  18. H. Morgan, A.G. Izquierdo, D. Bakewell, N.G. Green, A. Ramos, J. Phys. Appl. Phys. 34, 1553 (2001)CrossRefGoogle Scholar
  19. T. Müller, G. Gradl, S. Howitz, S. Shirley, T. Schnelle, G. Fuhr, Biosens. Bioelectron. 14, 247 (1999)CrossRefGoogle Scholar
  20. C.T. O’Konski, J. Phys. Chem. 64, 605 (1960)CrossRefGoogle Scholar
  21. S. Park, Y. Zhang, T.-H. Wang, S. Yang, Lab Chip 11, 2893 (2011)CrossRefGoogle Scholar
  22. B.D. Uhal, C. Ramos, I. Joshi, A. Bifero, A. Pardo, M. Selman, Am. J. Physiol. Lung Cell. Mol. Physiol. 275(L998) (1998)Google Scholar
  23. X. Wang, X.-B. Wang, F.F. Becker, P.R.C. Gascoyne, J. Phys. Appl. Phys. 29, 1649 (1996)CrossRefGoogle Scholar
  24. X.-B. Wang, J. Vykoukal, F.F. Becker, P.R.C. Gascoyne, Biophys. J. 74, 2689 (1998)CrossRefGoogle Scholar
  25. T.P. Zwaka, J.A. Thomson, Nat. Biotechnol. 21, 319 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lichen Rozitsky
    • 1
  • Amir Fine
    • 2
  • Dekel Dado
    • 2
  • Shahar Nussbaum-Ben-Shaul
    • 2
  • Shulamit Levenberg
    • 2
  • Gilad Yossifon
    • 3
    Email author
  1. 1.Russel Berrie Nanotechnology Institute (RBNI)Technion - Israel Institute of TechnologyHaifaIsrael
  2. 2.Faculty of Biomedical Engineering, Stem Cells Tissue Engineering LaboratoryTechnion - Israel Institute of TechnologyTechnion CityIsrael
  3. 3.Faculty of Mechanical Engineering, Micro- and Nanofluidics LaboratoryTechnion - Israel Institute of TechnologyTechnion CityIsrael

Personalised recommendations