Advertisement

Biomedical Microdevices

, Volume 15, Issue 3, pp 495–507 | Cite as

Microcontact printing and microspotting as methods for direct protein patterning on plasma deposited polyethylene oxide: application to stem cell patterning

  • Ana RuizEmail author
  • Marzena Zychowicz
  • Laura Ceriotti
  • Dora Mehn
  • Lucel Sirghi
  • Hubert Rauscher
  • Ilaria Mannelli
  • Pascal Colpo
  • Leonora BuzanskaEmail author
  • François RossiEmail author
Article

Abstract

Two methods for protein patterning on antifouling surfaces have been applied to analyze the density and bioactivity of the proteins after deposition. Microcontact printing has been used as a technique to transfer fibronectin through conformal contact, while piezoelectric deposition has been employed as a non-contact technique for producing arrays of fibronectin (FN). Plasma deposited polyethylene oxide-like (PEO-like) films have been used as non-fouling background to achieve the bioadhesive/biorepellent surface contrast. Both patterning methods allow the direct fabrication of protein arrays on a non-fouling substrate, and the subsequent formation of a pattern of stem cells by cell attachment on the arrayed substrates. Microcontact printing produced fully packed homogeneous fibronectin patterns, much denser than microspotted patterns. Both printing and spotting technologies generated functional protein arrays, their bioactivity being primarily modulated by the density of the deposited protein layer. Optimization of the FN parameters used for deposition has lead to the achievement of high-quality microarrays with large population of neural stem cells immobilized in the patterns in serum-free conditions, where cells exhibit a more homogeneous starting population and factors influencing fate decisions can be more easily tracked. The immunorecognition of fibronectin targeted antibodies, as well as the cell density, increase with the protein density up to a saturation point. Over 100 ng/cm2 of fibronectin on the surface leads to a decrease in the number of attached cells and a raise of cell spreading.

Keywords

Micropatterning Surface modification Protein Cell adhesion Stem cells 

Notes

Acknowledgements

This project has been financed by the European Commission Joint Research Centre Actions “NanoBiotechnology for Health” and “Validation for Consumer Products”, as well as by the Polish Ministry of Scientific Research and Higher Education grants No: 2211/B/P01/2010/38 and 5978/B/PO1/2010/38. The authors thank Ezio Parnisari for the PEO depositions and for the technical support received from Thierry Martin, Giovanni Maselli and Simone Malfara.

Supplementary material

Supplementary Video 1

Time-lapse recording of HUCB-Neural Stem Cells culture on FN patterns of squares connected with lines. Arrow indicates a process of interkinetic nuclear migration (MPEG 6567 kb)

References

  1. T. Ballet, L. Boulange, Y. Brechet, F. Bruckert, M. Weidenhaupt, Protein conformational changes induced by adsorption onto material surfaces: an important issue for biomedical applications of material science. Bull. Pol. Acad Tech. 58, 303 (2010)Google Scholar
  2. M. Bergkvist, J. Carlsson, S. Oscarsson, Surface-dependent conformations of human plasma fibronectin adsorbed to silica, mica, and hydrophobic surfaces, studied with use of Atomic Force Microscopy. J Biomed Mater Res 64A, 349 (2003)CrossRefGoogle Scholar
  3. A. Bernard, E. Delamarche, H. Schmid, B. Michel, H.R. Bosshard, H. Biebuyck, Printing patterns of proteins. Langmuir 14, 2225 (1998)CrossRefGoogle Scholar
  4. M.J.P. Biggs, R.G. Richards, N. Gadegaarda, C.D.W. Wilkinson, R.O.C. Oreffo, M.J. Dalbya, The use of nanoscale topography to modulate the dynamics of adhesion formation in primary osteoblasts and ERK/MAPK signalling in STRO-1+ enriched skeletal stem cells. Biomaterials 30, 5094 (2009)CrossRefGoogle Scholar
  5. F. Bretagnol, L. Ceriotti, M. Lejeune, A. Papadopoulou-Bouraoui, M. Hasiwa, D. Gilliland et al., Functional micropatterned surfaces by combination of plasma polymerization and lift-off processes. Plasma Proc. Pol. 3, 30 (2006a)CrossRefGoogle Scholar
  6. F. Bretagnol, M. Lejeune, A. Papadopoulou-Bouraoui, M. Hasiwa, H. Rauscher, G. Ceccone, P. Colpo, F. Rossi, Fouling and non-fouling surfaces produced by plasma polymerization of ethylene oxide monomer. Acta Biomat 2, 165 (2006b)CrossRefGoogle Scholar
  7. L. Buzanska, M. Jurga, E.K. Stachowiak, M.K. Stachowiak, K. Domanska-Janik, Neural stem-like cell line derived from a nonhematopoietic population of human umbilical cord blood. Stem Cells Dev 15, 391 (2006)CrossRefGoogle Scholar
  8. L. Buzanska, A. Ruiz, M. Zychowicz, H. Rauscher, L. Ceriotti, F. Rossi, P. Colpo, K. Domanska-Janik, S. Coecke, Patterned growth and differentiation of human cord blood-derived neural stem cells on bio-functionalised surfaces. Acta Neurobiol Exp 69, 24 (2009)Google Scholar
  9. L. Buzanska, M. Zychowicz, A. Ruiz, L. Ceriotti, S. Coecke, H. Rauscher, T. Sobanski, M. Whelan, K. Domanska-Janik, P. Colpo, F. Rossi, Neural stem cells from human cord blood on bioengineered surfaces – Novel approach to multiparameter bio-tests. Toxicology 270, 35 (2010)CrossRefGoogle Scholar
  10. L. Ceriotti, L. Buzanska, H. Rauscher, I. Mannelli, L. Sirghi, D. Gilliland, M. Hasiwa, F. Bretagnol, M. Zychowicz, A. Ruiz, S. Bremer, S. Coecke, P. Colpo, F. Rossi, Fabrication and characterization of protein arrays for stem cell patterning. Soft Matter 5, 1406 (2009)CrossRefGoogle Scholar
  11. S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurmann, H. Kropshofer, B. Michel, C. Fattinger, E. Delamarche, High-sensitivity miniaturized immunoassays for tumor necrosis factor alpha using microfluidic systems. Lab Chip 4(6), 563 (2004)CrossRefGoogle Scholar
  12. T.O. Collier, J.M. Anderson, Protein and surface effects on monocyte and macrophage adhesion, maturation, and survival. J Biomed Mater Res 60, 487 (2002)CrossRefGoogle Scholar
  13. Daub M, Zengerle R, Bioprinting on Chip. Encyclopedia of Microfluidics and Nanofluidics (Springer, 2008), pp. 84–96Google Scholar
  14. E. Delamarche, A. Bernard, H. Schmid, B. Michel, H. Biebuyck, Patterned delivery of immunoglobulins to surfaces using microfluidic networks. Science 276, 779 (1997)CrossRefGoogle Scholar
  15. D. Falconnet, G. Csucs, H.M. Grandin, M. Textor, Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27, 3044 (2006)CrossRefGoogle Scholar
  16. S.P. Fodor, R.P. Rava, X.C. Huang, A.C. Pease, C.P. Holmes, C.L. Adams, Multiplexed biochemical assays with biological chips. Nature 364, 555 (1993)CrossRefGoogle Scholar
  17. A.J. Garcia, Get a grip: integrins in cell-biomaterial interactions. Biomaterials 26, 7525 (2005)CrossRefGoogle Scholar
  18. C. Ge, G. Xiao, D. Jiang, R.T. Franceschi, Critical role of the extracellular signal–regulated kinase–MAPK pathway in osteoblast differentiation and skeletal development. J Cell Biol 176(5), 709 (2007)CrossRefGoogle Scholar
  19. L. Guemouri, J. Ogier, Z. Zekhnini, J.J. Ramsden, The architecture of fibronectin at surfaces. J Chem Phys 113, 8183 (2000)CrossRefGoogle Scholar
  20. A.G. Hemmersam, K. Rechendorff, M. Foss, D.S. Sutherland, F. Besenbacher, Fibronectin adsorption on gold, Ti-, and Ta-oxide investigated by QCM-D and RSA modelling. J Colloid Interface Sci 320, 110 (2008)CrossRefGoogle Scholar
  21. C.E. Ho, C.C. Chieng, M.H. Chen, F.G. Tseng, Micro-stamp system for batch-filling, parallel-spotting, and continuously printing of multiple biosample fluids. JALA 13(1), 187 (2008)Google Scholar
  22. N.F. Huang, B. Patlolla, O. Abilez, H. Sharma, J. Rajadas, R.E. Beygui, C.K. Zarins, J.P. Cooke, Acta Biomat 6, 4614 (2010)CrossRefGoogle Scholar
  23. B.G. Keselowsky, D.M. Collard, A.J. Garcia, Surface chemistry modulates focal adhesion composition and signaling through changes in integrin binding. Biomaterials 25, 5947 (2004)CrossRefGoogle Scholar
  24. B.G. Keselowsky, D.M. Collard, A.J. Garcia, Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Nat Acad Sci USA 102, 5953 (2005)CrossRefGoogle Scholar
  25. R.A. Latour, in Biomaterials: Protein-Surface Interactions, ed. by R.A. Latour, G.L. Bowlin, G. Wnek. Encyclopedia of Biomaterials and Biomedical Engineering. (2005), pp. 1–15Google Scholar
  26. S.C. Lin, F.G. Tseng, H.M. Huang, Y.F. Chen, Y.C. Tsai, C.E. Ho, C.C. Chieng, Simultaneous immobilization of protein microarrays by a micro stamper with back-filling reservoir. Sens Actuators B 99, 174 (2004)CrossRefGoogle Scholar
  27. W.F. Liu, C.S. Chen, Cellular and multicellular form and function. Adv Drug Deliv Rev 59, 1319 (2007)CrossRefGoogle Scholar
  28. M.P. Lutolf, P.M. Gilbert, H.M. Blau, Designing materials to direct stem-cell fate. Nature 462, 433 (2009)CrossRefGoogle Scholar
  29. G. MacBeath, S.L. Schreiber, Printing proteins as microarrays for high-throughput function determination. Science 289, 1760 (2000)Google Scholar
  30. V. Nelea, Y. Nakano, M.T. Kaartinen, Size distribution and molecular associations of plasma fibronectin and fibronectin crosslinked by transglutaminase 2. Protein J 27, 223 (2008)CrossRefGoogle Scholar
  31. S.A. Ruiz, C.S. Chen, Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells 26, 2921 (2008)CrossRefGoogle Scholar
  32. A. Ruiz, L. Ceriotti, L. Buzanska, M. Hasiwa, F. Bretagnol, G. Ceccone, D. Gilliland, H. Rauscher, S. Coecke, P. Colpo, F. Rossi, Controlled micropatterning of biomolecules for cell culturing. Microelectron Eng 84, 1733 (2007)CrossRefGoogle Scholar
  33. A. Ruiz, L. Buzanska, L. Ceriotti, F. Bretagnol, S. Coecke, P. Colpo, F. Rossi, Stem cells culturing on patterned bio-functional surfaces. J. Biomater. Sci. Polymer Ed. 19, 1649 (2008a)CrossRefGoogle Scholar
  34. A. Ruiz, L. Buzanska, D. Gilliland, T. Sobanski, L. Ceriotti, S. Coecke, P. Colpo, F. Rossi, Micro-stamped surfaces for the patterned growth of neural stem cells. Biomaterials 29, 4766 (2008b)CrossRefGoogle Scholar
  35. D. Ryan, B.A. Parviz, V. Linder, V. Semetey, S.K. Sia, J. Su, M. Mrksich, G.M. Whitesides, Patterning multiple aligned self-assembled monolayers using light. Langmuir 20, 9080 (2004)CrossRefGoogle Scholar
  36. M.M. Santore, C.F. Wertz, Protein spreading kinetics at liquid-solid interfaces via an adsorption probe method. Langmuir 21, 10172 (2005)CrossRefGoogle Scholar
  37. B. Sivaraman, K.P. Fears, R.A. Latour, Investigation of the effects of surface chemistry and solution concentration on the conformation of adsorbed proteins using an improved circular dichroism method. Langmuir 25, 3050 (2009)CrossRefGoogle Scholar
  38. Y. Soen, A. Mori, T.D. Palmer, P.O. Brown, Exploring the regulation of human neural precursor cell differentiation using arrays of signaling microenvironments. Mol Syst Biol 2, 37 (2006)CrossRefGoogle Scholar
  39. J.D. Sweatt, The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76, 1 (2001)CrossRefGoogle Scholar
  40. M.C. Tate, A.J. Garcia, B.G. Keselowsky, M.A. Schumm, D.R. Archer, M.C. LaPlaca, Specific beta1 integrins mediate adhesion, migration, and differentiation of neural progenitors derived from the embryonic striatum. Mol Cell Neurosci 27, 22 (2004)CrossRefGoogle Scholar
  41. C. Thibault, V. Le Berre, S. Casimirius, E. Trevisiol, J. François, C. Vieu, Direct microcontact printing of oligonucleotides fir biochip applications. J Nanobiotech 3, 7 (2005)CrossRefGoogle Scholar
  42. N.M. Tooney, M.W. Mosesson, D.L. Amrani, J.F. Hainfeld, J.S. Wall, Solution and surface effects on plasma fibronectin structure. J. Cell Biol. 97, 1686 (1983)CrossRefGoogle Scholar
  43. D. Van Hoof, A.D. Mendelsohn, R. Seerke, T.A. Desai, M.S. German, Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters. Stem Cell Res. 6(276) (2011)Google Scholar
  44. V. Vogel, G. Baneyx, The tissue engineering puzzle: a molecular perspective. Annu Rev Biomed Eng Annu Rev Palo Alto CA 5, 441–463 (2003)CrossRefGoogle Scholar
  45. C.F. Wertz, M.M. Santore, Effect of surface hydrophobicity on adsorption and relaxation kinetics of albumin and fibrinogen: single-species and competitive behaviour. Langmuir 17, 3006 (2001)CrossRefGoogle Scholar
  46. M. Zychowicz, D. Mehn, A. Ruiz, P. Colpo, F. Rossi, M. Frontczak-Baniewicz, K. Domanska-Janik, L. Buzanska, Proliferation capacity of cord blood derived neural stem cell line on different micro-scale biofunctional domains. Acta Neurobiol Exp 71, 12 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ana Ruiz
    • 1
    • 4
    Email author
  • Marzena Zychowicz
    • 2
  • Laura Ceriotti
    • 1
  • Dora Mehn
    • 1
  • Lucel Sirghi
    • 1
    • 3
  • Hubert Rauscher
    • 1
  • Ilaria Mannelli
    • 1
  • Pascal Colpo
    • 1
  • Leonora Buzanska
    • 2
    Email author
  • François Rossi
    • 1
    Email author
  1. 1.European Commission, Joint Research CentreInstitute for Health and Consumer Protection, TP 203IspraItaly
  2. 2.Mossakowski Medical Research CentrePolish Academy of SciencesWarsawPoland
  3. 3.Department of PhysicsAlexandru Ioan Cuza UniversityIasiRomania
  4. 4.Department of Applied Biotechnology and Translational MedicineUniversity of MilanMilanItaly

Personalised recommendations