Biomedical Microdevices

, Volume 14, Issue 5, pp 921–928 | Cite as

Formation of lipid bilayers inside microfluidic channel array for monitoring membrane-embedded nanopores of phi29 DNA packaging nanomotor

  • Joon S. Shim
  • Jia Geng
  • Chong H. AhnEmail author
  • Peixuan GuoEmail author


An efficient method to form lipid bilayers inside an array of microfluidic channels has been developed and applied to monitor the membrane-embedded phi29 DNA packaging motor with an electrochemical characterization on a lab-on-a-chip (LOC) platform. A push-pull junction capturing approach was applied to confine a small amount of the lipid solution inside a microchannel. The selective permeability between solvents and water in PDMS was utilized to extract the solvent from the lipid solution, resulting in a self-formation of the lipid bilayer in the microchannel array. Each microchannel was independently connected to a silver/silver chloride (Ag/AgCl) electrode array, leading to a high-throughput monitoring of the nanopore insertion in the formed lipid bilayers. The formation of multiple lipid bilayers inside an array of microchannels and the simultaneous electrical and optical monitoring of multiple bilayer provides an efficient LOC platform for the further development of single phi29 motor pore sensing and high throughput single pore dsDNA sequencing.


Lipid bilayer Push-pull junction capturing Nano Channel Single Pore Conductance High throughput DNA sequencing Viral DNA packaging Motor 



Supported by NIH grants EB012135 (P. G.) as well as NIH Nanomedicine Development Center: Phi29 DNA Packaging Motor for Nanomedicine, through the NIH Roadmap for Medical Research (PN2 EY 018230) (P.G.). P.G. is a co-founder of Kylin Therapeutics, Inc, and Biomotor and Nucleic Acid Nanotechnology Development Corp, Ltd.

Supplementary material


(MPG 5832 kb)


  1. A. Manz, H. Becker, Microsystem Technology in Chemistry and Life Science (Springer, 1998).Google Scholar
  2. B. Le Pioufle, H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Anal. Chem. 80, 328 (2008)CrossRefGoogle Scholar
  3. C.H. Ahn, C. Jin-Woo, G. Beaucage, J. Nevin, L. Jeong-Bong, A. Puntambekar, J.Y. Lee, Proc. IEEE 92, 154 (2004)CrossRefGoogle Scholar
  4. C. Ibanez, J. A. Garcia, J. L. Carrascosa, M. Salas, Nucleic Acids Res. 12, 2351 (1984)Google Scholar
  5. D. Shu, H. Zhang, J. Jin, and P. Guo, EMBO J. 26, 527 (2007)Google Scholar
  6. D. Wendell, P. Jing, J. Geng, V. Subramaniam, T.J. Lee, C. Montemagno, P. Guo, Nat. Nano. 4, 765 (2009)CrossRefGoogle Scholar
  7. F. Haque, J. Lunn, H. Fang, D. Smithrud, P. Guo, ACS Nano. 6(4), 3251–3261 (2012)Google Scholar
  8. F. Xiao, J. Sun, O. Coban, P. Schoen, J. C. Wang,. R. H. Cheng, P. Guo, ACS Nano 3, 100 (2009)Google Scholar
  9. F. Zhang, S. Lemieux, X. Wu, S. St. Arnaud, C.T. McMurray, F. Major, and D. Anderson, Mol. Cell. 2, 141 (1998)Google Scholar
  10. H. Fang, P. Jing, F. Haque, P. Guo, Biophysical Journal 102, 127 (2012)Google Scholar
  11. H. Suzuki, S. Takeuchi, Anal. Bioanal. Chem. 391, 2695 (2008)CrossRefGoogle Scholar
  12. H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Biosens. Bioelec. 22, 1111 (2007)CrossRefGoogle Scholar
  13. H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Langmuir 22, 1937 (2006)CrossRefGoogle Scholar
  14. J. Geng, H. Fang, F. Haque, L. Zhang, P. Guo, Biomaterials 32, 8234 (2011)Google Scholar
  15. J.C. McDonald, G.M. Whitesides, Acc. Chem. Res. 35, 491 (2002)CrossRefGoogle Scholar
  16. J.L. Poulos, T. Jeon, R. Damoiseaux, E.J. Gillespie, K.A. Bradley, J.J. Schmidt, Biosens. and Bioelec. 24, 1806 (2009)Google Scholar
  17. J. Monahan, A.A. Gewirth, R. Nuzzo, Anal. Chem. 73, 3193 (2001)CrossRefGoogle Scholar
  18. J.P. Dilger, S.G. McLaughlin, T.J. McIntosh, S.A. Simon, Science 206, 1196 (1979)CrossRefGoogle Scholar
  19. K. Aathavan, A.T. Politzer, A. Kaplan, J.R. Moffitt, Y.R. Chemla, S. Grimes, P.J. Jardine, D.L. Anderson, and C. Bustamante, Nature 461, 669 (2009)Google Scholar
  20. K. Funakoshi, H. Suzuki, S. Takeuchi, Anal. Chem. 78, 8169 (2006)CrossRefGoogle Scholar
  21. M. A. Robinson et al., Nucleic Acids Res. 34, 2698 (2006)Google Scholar
  22. M.E. Sandison, M. Zagnoni, H. Morgan, Langmuir 23, 8277 (2007)CrossRefGoogle Scholar
  23. N. Malmstadt, M.A. Nash, R.F. Purnell, J.J. Schmidt, Nano. Lett. 6(9), 1961 (2006)CrossRefGoogle Scholar
  24. P. Guo, S. Erickson, and D. Anderson, Science 236, 690 (1987a)Google Scholar
  25. P. Guo, C. Peterson, and D Anderson, J. Mol. Biol. 197, 219 (1987b)Google Scholar
  26. P. Guo, C. Zhang, C. Chen, M. Trottier, and K. Garver, Mol. Cell. 2,149 (1998)Google Scholar
  27. P. Guo, Prog. Nucleic Acid Res. Mol. Biol. 72, 415 (2002)Google Scholar
  28. P. Jing, F. Haque, A. Vonderheide, C. Montemagno, P. Guo, Mol. BioSys. 6, 1844 (2010a)CrossRefGoogle Scholar
  29. P. Jing, F. Haque, D. Shu, C. Montemagno, P. Guo, Nano Lett. 10(9), 3620 (2010b)CrossRefGoogle Scholar
  30. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442, 412 (2006)CrossRefGoogle Scholar
  31. R.E. Oosterbroek, A. van den Berg, Lab-on-a-Chip; Miniaturized Systems for (BIO)Chemical Analysis and Synthesis (Elsevier B.V, Amsterdam, 2003)Google Scholar
  32. S. H. White, The physical nature of planar bilayer membranes in Ion Channel Reconstitution, C. Miller, Ed. Plenum Press, NY. pp. 3-35. (1986)Google Scholar
  33. S. Ota, H. Suzuki, S. Takeuchi, Lab. Chip. 11, 2485 (2011)CrossRefGoogle Scholar
  34. T. Osaki, H. Suzuki, B. Le Pioufle, S. Takeuchi, Anal. Chem. 81, 9866 (2009)CrossRefGoogle Scholar
  35. Y. Cai, F. Xiao, P. Guo, Nanomedicine 4, 8 (2008)Google Scholar
  36. Y. Guo, F. Blocker, F. Xiao, P. Guo, J. Nanosci. Nanotechnol. 5, 856 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.College of Engineering and Applied ScienceUniversity of CincinnatiCincinnatiUSA

Personalised recommendations