Biomedical Microdevices

, Volume 13, Issue 6, pp 1063–1073 | Cite as

Single-cell electroendocytosis on a micro chip using in situ fluorescence microscopy

  • Ran Lin
  • Donald C. Chang
  • Yi-Kuen LeeEmail author


Electroendocytosis (EED), i.e. electric field-induced endocytosis, is a technique for bio-molecule and drug delivery to cells using a pulsed electric field lower than that applied in electroporation (EP). Different from EP in which nanometer-sized electropores appear on the plasma membrane lipid bilayer, EED induces cell membrane internalization and fission via endocytotic vesicles. In this study, we conduct comprehensive experimental study on the EED of HeLa cells using a micro chip and the corresponding endocytotic vesicles were visualized and investigated by using FM4-64 fluorescent dye and in situ fluorescence microscopy. The uptake of molecules by the EED of cells was characterized by average intracellular fluorescent intensity from a large number (>2,000) of single cells. The EED efficiency was determined as a function of three electric parameters (electric field strength, pulse duration, total electric treatment time). The EED efficiency as a function of electric field strength clearly shows biphasic characteristics at different experimental conditions. The EED experiments using cytoskeleton inhibitors illustrate unique mechanisms distinct from EP. This study provides a foundation for further on-chip study of the time-dependent mechanism of EED at the single-cell level.


Electroendocytosis In situ fluorescence microscopy Electroporation HeLa cells FM4-64 Propidium iodide Demecolcine 



This work was supported by the Hong Kong Research Grants Council (Project Ref No. 615907). The authors would like to thank Mr. Guangyao Yin, Mr. Wentao Wang, Dr. Peigang Deng, Ms. Inez Tsui, Mr. Wan Lap Yeung, and Mr. Allen Ng at HKUST for technical support.

Supplementary material

10544_2011_9576_MOESM1_ESM.doc (3.2 mb)
Fig. S1 (DOC 3262 kb)
10544_2011_9576_MOESM2_ESM.doc (697 kb)
Fig. S2 (DOC 697 kb)
10544_2011_9576_MOESM3_ESM.doc (44 kb)
Table S1 (DOC 43 kb)
Video S1

(MPG 2228 kb)

Video S2

(MPG 2032 kb)

Video S3

(MPG 1710 kb)


  1. H. Andersson, A. van den Berg, Sensor Actuat B-Chem 92(3), 315–325 (2003)CrossRefGoogle Scholar
  2. H. Andersson, A. van den Berg, Curr Opin Biotechnol 15(1), 44–49 (2004)CrossRefGoogle Scholar
  3. Y. Antov, A. Barbul, R. Korenstein, Exp Cell Res 297(2), 348–362 (2004)CrossRefGoogle Scholar
  4. Y. Antov, A. Barbul, H. Mantsur, R. Korenstein, Biophys J 88(3), 2206–2223 (2005)CrossRefGoogle Scholar
  5. G. Apodaca, Traffic 2(3), 149–159 (2001)CrossRefGoogle Scholar
  6. D.C. Bartoletti, G.I. Harrison, J.C. Weaver, FEBS Lett 256(1–2), 4–10 (1989)CrossRefGoogle Scholar
  7. S. Bolte, C. Talbot, Y. Boutte, O. Catrice, N.D. Read, B. Satiat-Jeunemaitre, J Microsc-Oxford 214(2), 159–173 (2004)MathSciNetCrossRefGoogle Scholar
  8. P.J. Canatella, J.F. Karr, J.A. Petros, M.R. Prausnitz, Biophys J 80(2), 755–764 (2001)CrossRefGoogle Scholar
  9. D.C. Chang, B.M. Chassy, J.A. Saunders, A.E. Sowers, Guide to electroporation and electrofusion (Academic, San Diego, 1992), pp. 9–27Google Scholar
  10. S.D. Conner, S.L. Schmid, Nature 422(6927), 37–44 (2003)CrossRefGoogle Scholar
  11. J.D. Deng, K.H. Schoenbach, E.S. Buescher, P.S. Hair, P.M. Fox, S.J. Beebe, Biophys J 84(4), 2709–2714 (2003)CrossRefGoogle Scholar
  12. M.B. Fox, D.C. Esveld, A. Valero, R. Luttge, H.C. Mastwijk, P.V. Bartels, A. van den Berg, R.M. Boom, Anal Bioanal Chem 385(3), 474–485 (2006)CrossRefGoogle Scholar
  13. M.A. Gaffield, W.J. Betz, Nat Protoc 1(6), 2916–2921 (2006)CrossRefGoogle Scholar
  14. M. Glogauer, W. Lee, C.A.G. Mcculloch, Exp Cell Res 208(1), 232–240 (1993)CrossRefGoogle Scholar
  15. M. Golzio, J. Teissie, M.P. Rols, Proc Natl Acad Sci 99(3), 1292–1297 (2002)CrossRefGoogle Scholar
  16. R. P. Haugland, Handbook of fluorescent probes and research products, (Molecular Probes, Eugene, 2002), pp. 578, 683–684Google Scholar
  17. H.Q. He, D.C. Chang, Y.K. Lee, Bioelectrochemistry 68(1), 89–97 (2006)CrossRefGoogle Scholar
  18. H.Q. He, D.C. Chang, Y.K. Lee, Bioelectrochemistry 70(2), 363–368 (2007)CrossRefGoogle Scholar
  19. H.Q. He, D.C. Chang, Y.K. Lee, Bioelectrochemistry 72(2), 161–168 (2008)CrossRefGoogle Scholar
  20. Y. Huang, B. Rubinsky, Sensor Actuat a-Phys 89(3), 242–249 (2001)CrossRefGoogle Scholar
  21. M. Jin, M.D. Snider, J Biol Chem 268(24), 18390–18397 (1993)Google Scholar
  22. M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, L.P. Lee, Lab Chip 5(1), 38–43 (2005)CrossRefGoogle Scholar
  23. W. Krassowska, P.D. Filev, Biophys J 92(2), 404–417 (2007)CrossRefGoogle Scholar
  24. S. Kumari, S. Mg, S. Mayor, Cell Res 20(3), 256–275 (2010)CrossRefGoogle Scholar
  25. H. Lambert, R. Pankov, J. Gauthier, R. Hancock, Biochem Cell Biol 68(4), 729–734 (1990)CrossRefGoogle Scholar
  26. I. Mellman, Annu Rev Cell Dev Biol 12(1), 575–625 (1996)CrossRefGoogle Scholar
  27. E. Neumann, A.E. Sowers, C.A. Jordan, Electroporation and electrofusion in cell biology (Plenum Press, New York, 1989), pp. 61–82Google Scholar
  28. W.D. Niles, A.B. Malik, J Membr Biol 167(1), 85–101 (1999)CrossRefGoogle Scholar
  29. H. Noguchi, M. Matsushita, S. Matsumoto, Y.F. Lu, H. Matsui, S. Bonner-Weir, Biochem Biophys Res Commun 332(1), 68–74 (2005)CrossRefGoogle Scholar
  30. C.Y. Okada, M. Rechsteiner, Cell 29(1), 33–41 (1982)CrossRefGoogle Scholar
  31. A. Piasek, J. Thyberg, J Cell Sci 45(1), 59–71 (1980)Google Scholar
  32. Z.M. Qian, H.Y. Li, H.Z. Sun, K. Ho, Pharmacol Rev 54(4), 561–587 (2002)CrossRefGoogle Scholar
  33. M.P. Rols, P. Femenia, J. Teissie, Biochem Biophys Res Commun 208(1), 26–35 (1995)CrossRefGoogle Scholar
  34. Y. Rosemberg, R. Korenstein, Bioelectrochem Bioenerg 42(2), 275–281 (1997)CrossRefGoogle Scholar
  35. T.A. Vida, S.D. Emr, J Cell Biol 128(5), 779–792 (1995)CrossRefGoogle Scholar
  36. M.E. Ward, A. Murray, J Gen Microbiol 130(7), 1765–1780 (1984)Google Scholar
  37. J.N. Weinstein, S. Yoshikami, P. Henkart, R. Blumenthal, W.A. Hagins, Science 195(4277), 489–492 (1977)CrossRefGoogle Scholar
  38. G.M. Whitesides, Nature 442(7101), 368–373 (2006)CrossRefGoogle Scholar
  39. C.J.G. Yeh, B.L. Hsi, W.P. Faulk, J Immunol Methods 43(3), 269 (1981)CrossRefGoogle Scholar
  40. U. Zimmermann, R. Schnettler, G. Klock, H. Watzka, E. Donath, R.W. Glaser, Naturwissenschaften 77(11), 543–545 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Bioengineering Graduate ProgramThe Hong Kong University of Science and TechnologyClear Water BayHong Kong
  2. 2.Department of Mechanical EngineeringThe Hong Kong University of Science and TechnologyClear Water BayHong Kong
  3. 3.Division of Life ScienceThe Hong Kong University of Science and TechnologyClear Water BayHong Kong

Personalised recommendations