Skip to main content
Log in

Screening cell surface receptors using micromosaic immunoassays

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This report presents a general method for screening cell surface receptors using so-called micromosaic immunoassays. This method employs a microfluidic chip having n (n = 11) independent flow paths to move cells over m (m = 11) lines of surface-patterned antibodies for screening individual cells in a parallel, combinatorial, fast and flexible manner. The antibodies are patterned as 30-μm-wide lines on a poly(dimethylsiloxane) layer used to seal the area of the chip in which screening is being monitored. Mouse hybridoma cells having CD44 cell surface receptors and anti-CD44 antibodies were used to establish a proof-of-concept for this method. Both the capture antibodies and the cells were fluorescently labelled to allow the position of the cells to be accurately tracked over the binding sites using an inverted fluorescence microscope. The chips and cells were maintained at a constant temperature between 20 to 37°C, and flow velocities of the cells over the capture areas were 100–280 μm~s−1, resulting in a ∼0.1–0.3 s residency time of the cells on each of the eleven 30 × 30 μm s2 capture areas. Binding of the cells appeared to be specific to the capture areas, with a yield of 30% when the assay was performed at a temperature of 37°C and with a slow flow velocity. We suggest that this proof-of-concept is broadly applicable to the screening of cells for medical/diagnostic purposes as well as for basic research on the interaction of cells with surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Bernard, B. Michel, and E. Delamarche, Anal. Chem. 73, 8–12 (2001).

  • S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, Lab Chip 4, 563–569 (2004).

    Google Scholar 

  • S. Chen, R. Alon, R.C. Fuhlbrigge, and T.A. Springer, Proc Natl Acad Sci USA 94, 3172–3177 (1997).

  • D.T. Chiu, N.L. Jeon, S. Huang, R.S. Kane, C.J. Wargo, I.S. Choi, D.E. Ingber, and G.M. Whitesides, Proc Natl Acad Sci U S A 97, 2408–2413 (2000).

    Google Scholar 

  • Comment. Danger: piranha solution is a strong oxidizer and explosions can occur when it is mixed with organic compounds/solvents. A safer alternative for cleaning microfluidic chips is to use a UV/ozone reactor.

  • E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, and H. Biebuyck, J. Am. Chem. Soc. 120, 500–508 (1998).

    Google Scholar 

  • E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, Science 276, 779–781 (1997).

  • E. Delamarche, D. Juncker, and H. Schmid, Adv. Mat. 17, 2911–2933 (2005).

    Google Scholar 

  • A.O. Eniola, P.J. Willcox, and D.A. Hammer, Biophys. J. 85, 2720–2731 (2003).

    Google Scholar 

  • E. Fitzpatrick, S. McBride, J. Yavelow, S. Najmi, P. Zanzucchi, and R. Wieder, Clin. Chem. 52, 1080–1088 (2006).

    Google Scholar 

  • A.Y. Fu, C. Spence, A. Scherer, F.H. Arnold, and S.R. Quake, Nat. Biotechnol. 17, 1109–1111 (1999).

    Google Scholar 

  • N.D. Gallant, J.R. Capadona, A.B. Frazier, D.M. Collard, and A.J. Garcia, Langmuir 18, 5579–5584 (2002).

  • D. Huh, W. Gu, Y. Kamotani, J.B. Grotberg, and S. Takayama, Physiol. Meas. 26, R73–R98 (2005).

    Google Scholar 

  • X. Jiang, J.M.K. Ng, A.D. Stroock, S.K.W. Dertinger, and G.M. Whitesides, J. Am. Chem. Soc. 125, 5294–5295 (2003).

    Google Scholar 

  • D. Juncker, H. Schmid, U. Drechsler, H. Wolf, M. Wolf, B. Michel, N. deRooij, and E. Delamarche, Anal. Chem. 74, 6139–6144 (2002).

    Google Scholar 

  • V. Kanda, J.K. Kariuki, D.J. Harrison, and M.T. McDermott, Anal. Chem. 76, 7257–7262 (2004).

    Google Scholar 

  • A. Khademhosseini, J. Yeh, G. Eng, J. Karp, H. Kaji, J. Borenstein, O.C. Farokhzad, and R. Langer, Lab Chip 5, 1380–1386 (2005).

    Google Scholar 

  • G.C. Koo, and J.R. Peppard, Hybridoma 3, 301–303 (1984).

  • S.K. Kung, R.C. Su, J. Shannon, and R.G. Miller, Hybridoma 20, 91–101 (2001).

  • N. Li, A. Tourovskaia, and A. Folch, Crit. Rev. Biomed. Eng. 31, 423–488 (2003).

    Google Scholar 

  • N. Li Jeon, H. Baskaran, S.K.W. Dertinger, G.M. Whitesides, L. Van De Water, and M. Toner, Nat. Biotech. 20, 826–830 (2002).

    Google Scholar 

  • D. Mattanovich, and N. Borth, Microb. Cell. Fact. 5, 12 (2006).

    Google Scholar 

  • K. Miyake, C.B. Underhill, J. Lesley, and P.W. Kincade, J. Exp. Med. 172, 69–75 (1990).

    Google Scholar 

  • B.P. Nelson, T.E. Grimsrud, M.R. Liles, R.M. Goodman, and R.M. Corn, Anal. Chem. 73, 1–7 (2001).

    Google Scholar 

  • A. Persidis, Nat. Biotechnol. 16, 488–489 (1998).

    Google Scholar 

  • J. Pihl, J. Sinclair, E. Sahlin, M. Karlsson, F. Petterson, J. Olofsson, and O. Orwar, Anal. Chem. 77, 3897–3903 (2005).

    Google Scholar 

  • C.R. Poulsen, C.T. Culbertson, S.C. Jacobson, and J.M. Ramsey, Anal. Chem. 77, 667–672 (2005).

    Google Scholar 

  • A. Prokop, Z. Prokop, D. Schaffer, E. Kozlov, J. Wikswo, D. Cliffel, and F. Baudenbacher, Biomed. Microdev. 6, 325–339 (2004).

    Google Scholar 

  • R.M. Rowan, O.W.V. Assendelft, and F.E. Preston, Advances in Laboratory Methods: General Haematology. (Oxford University Press Inc., New York, 2002).

  • C.A. Rowe, S.B. Scruggs, M.J. Feldstein, J.P. Golden, and F.S. Ligler, Anal. Chem. 71, 433–439 (1999a).

    Google Scholar 

  • C.A. Rowe, L.M. Tender, M.J. Feldstein, J.P. Golden, S.B. Scruggs, B.D. MacCraith, J.J. Cras, and F.S. Ligler, Anal. Chem. 71, 3846–3852 (1999b).

  • J.P. Shelby, J. White, K. Ganesan, P.K. Rathod, and D.T. Chiu, Proc Natl Acad Sci U S A 100, 14618–14622 (2003).

    Google Scholar 

  • S. Takayama, J.C. McDonald, E. Ostuni, M.N. Liang, P.J. Kenis, R.F. Ismagilov, and G.M. Whitesides, Proc Natl Acad Sci U S A 96, 5545–5548 (1999).

    Google Scholar 

  • A. Tourovskaia, X. Figueroa-Masot, and A. Folch, Lab Chip 5, 14–19 (2005).

    Google Scholar 

  • A.R. Wheeler, W.R. Throndset, R.J. Whelan, A.M. Leach, R.N. Zare, Y.H. Liao, K. Farrell, I.D. Manger, and A. Daridon, Anal. Chem. 75, 3581–3586 (2003).

    Google Scholar 

  • M. Wolf, D. Juncker, B. Michel, P. Hunziker, and E. Delamarche, Biosens. Bioelectron. 19, 1193–1202 (2004).

    Google Scholar 

  • M. Zimmermann, S. Bentley, H. Schmid, P. Hunziker, and E. Delamarche, Lab Chip 5, 1355–1359 (2005).

    Google Scholar 

  • M. Zimmermann, H. Schmid, P. Hunziker, and E. Delamarche (2006). published in Lab Chip, DOI:10.1039/b609813d.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emmanuel Delamarche or Patrick Hunziker.

Electronic supplementary material

Quicktime Movie (385 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, M., Zimmermann, M., Delamarche, E. et al. Screening cell surface receptors using micromosaic immunoassays. Biomed Microdevices 9, 135–141 (2007). https://doi.org/10.1007/s10544-006-9006-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-9006-6

Keywords

Navigation