Poincaré–Friedrichs inequalities of complexes of discrete distributional differential forms
Article
First Online:
- 5 Downloads
Abstract
We derive bounds for the constants in Poincaré–Friedrichs inequalities with respect to mesh-dependent norms for complexes of discrete distributional differential forms. A key tool is a generalized flux reconstruction which is of independent interest. The results apply to piecewise polynomial de Rham sequences on bounded domains with mixed boundary conditions.
Keywords
Discrete distributional differential form Finite element exterior calculus Finite element method Homology theory Poincaré–Friedrichs inequalityMathematics Subject Classification
65N30Notes
References
- 1.Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)MathSciNetCrossRefGoogle Scholar
- 2.Arnold, D.N., Falk, R.S., Winther, R.: Geometric decompositions and local bases for spaces of finite element differential forms. Comput. Methods Appl. Mech. Eng. 198(21–26), 1660–1672 (2009)MathSciNetCrossRefGoogle Scholar
- 3.Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus: from Hodge theory to numerical stability. Bull. Am. Math. Soc. 47(2), 281–354 (2010)MathSciNetCrossRefGoogle Scholar
- 4.Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology. Graduate Texts in Mathematics, vol. 82. Springer, New York (1982)CrossRefGoogle Scholar
- 5.Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comput. 77(262), 651–672 (2008)MathSciNetCrossRefGoogle Scholar
- 6.Christiansen, S.H., Munthe-Kaas, H.Z., Owren, B.: Topics in structure-preserving discretization. Acta Numer. 20, 1–119 (2011)MathSciNetCrossRefGoogle Scholar
- 7.Christiansen, S.H., Rapetti, F.: On high order finite element spaces of differential forms. Math. Comput. (2015). https://doi.org/10.1090/mcom/2995 CrossRefzbMATHGoogle Scholar
- 8.Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1980)zbMATHGoogle Scholar
- 9.Costabel, M., McIntosh, A.: On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265(2), 297–320 (2010)MathSciNetCrossRefGoogle Scholar
- 10.Desoer, C.A., Whalen, B.H.: A note on pseudoinverses. J. Soc. Ind. Appl. Math. 11(2), 442–447 (1963)MathSciNetCrossRefGoogle Scholar
- 11.Dodziuk, J.: Finite-difference approach to the Hodge theory of harmonic forms. Am. J. Math. 98, 79–104 (1976)MathSciNetCrossRefGoogle Scholar
- 12.Gelfand, S.I., Manin, Y.I.: Homological Algebra. Encyclopedia of Mathematical Sciences, vol. 38. Springer, Berlin (1999)Google Scholar
- 13.Gol’dshtein, V., Mitrea, I., Mitrea, M.: Hodge decompositions with mixed boundary conditions and applications to partial differential equations on Lipschitz manifolds. J. Math. Sci. 172(3), 347–400 (2011)MathSciNetCrossRefGoogle Scholar
- 14.Hiptmair, R.: Higher order Whitney forms. Geom. Methods Comput. Electromagn. 32, 271–299 (2001)Google Scholar
- 15.Hiptmair, R.: Finite elements in computational electromagnetism. Acta Numer. 11(1), 237–339 (2002)MathSciNetCrossRefGoogle Scholar
- 16.Jochmann, F.: A compactness result for vector fields with divergence and curl in \(l^q\) involving mixed boundary conditions. Appl. Anal. 66(1–2), 189–203 (1997)MathSciNetCrossRefGoogle Scholar
- 17.Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218, 2nd edn. Springer, New York (2012)CrossRefGoogle Scholar
- 18.Licht, M.W.: Complexes of discrete distributional differential forms and their homology theory. Found. Comput. Math. (2016). https://doi.org/10.1007/s10208-016-9315-y CrossRefzbMATHGoogle Scholar
- 19.Licht, M.W.: On the a priori and a posteriori error analysis in finite element exterior calculus. Ph.D. Thesis, Dissertation, Department of Mathematics, University of Oslo, Norway (2017)Google Scholar
- 20.Picard, R.: An elementary proof for a compact imbedding result in generalized electromagnetic theory. Math. Z. 187(2), 151–164 (1984)MathSciNetCrossRefGoogle Scholar
- 21.Picard, R., Weck, N., Witsch, K.J.: Time-harmonic Maxwell equations in the exterior of perfectly conducting, irregular obstacles. Analysis 21(3), 231–264 (2001)MathSciNetCrossRefGoogle Scholar
- 22.Rapetti, F., Bossavit, A.: Whitney forms of higher degree. SIAM J. Numer. Anal. 47, 2369–2386 (2009)MathSciNetCrossRefGoogle Scholar
- 23.Spanier, E.H.: Algebraic Topology. Springer, New York (1995). Corrected reprint of the 1966 originalGoogle Scholar
- 24.Weber, C., Werner, P.: A local compactness theorem for Maxwell’s equations. Math. Methods Appl. Sci. 2(1), 12–25 (1980)MathSciNetCrossRefGoogle Scholar
- 25.Weck, N.: Maxwell’s boundary value problem on Riemannian manifolds with nonsmooth boundaries. J. Math. Anal. Appl. 46(2), 410–437 (1974)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer Nature B.V. 2019