Solution methods for linear discrete ill-posed problems for color image restoration
- 35 Downloads
Abstract
This work discusses four algorithms for the solution of linear discrete ill-posed problems with several right-hand side vectors. These algorithms can be applied, for instance, to multi-channel image restoration when the image degradation model is described by a linear system of equations with multiple right-hand sides that are contaminated by errors. Two of the algorithms are block generalizations of the standard Golub–Kahan bidiagonalization method with the block size equal to the number of channels. One algorithm uses standard Golub–Kahan bidiagonalization without restarts for all right-hand sides. These schemes are compared to standard Golub–Kahan bidiagonalization applied to each right-hand side independently. Tikhonov regularization is used to avoid severe error propagation. Numerical examples illustrate the performance of these algorithms. Applications include the restoration of color images.
Keywords
Golub–Kahan bidiagonalization Block Golub–Kahan bidiagonalization Global Golub–Kahan bidiagonalization Tikhonov regularization Ill-posed problem Multiple right-hand sides Color image restorationMathematics Subject Classification
6510 65F22Notes
Acknowledgements
The authors would like to thank Lars Eldén and the referee for carefully reading the manuscript and for comments that improved the presentation. The authors also would like to thank Alessandro Buccini for comments. Research by L.R. is supported in part by NSF Grants DMS-1729509 and DMS-1720259.
References
- 1.Bentbib, A.H., El Guide, M., Jbilou, K., Reichel, L.: Global Golub–Kahan bidiagonalization applied to large discrete ill-posed problems. J. Comput. Appl. Math. 322, 46–56 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 2.Calvetti, D., Hansen, P.C., Reichel, L.: L-curve curvature bounds via Lanczos bidiagonalization. Electron. Trans. Numer. Anal. 14, 134–149 (2002)MathSciNetMATHGoogle Scholar
- 3.Calvetti, D., Reichel, L.: Tikhonov regularization of large linear problems. BIT 43, 263–283 (2003)MathSciNetCrossRefMATHGoogle Scholar
- 4.Chan, T.F., Wan, W.L.: Analysis of projection methods for solving linear systems with multiple right-hand sides. SIAM J. Stat. Comput. 18, 1698–1721 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 5.El Guennouni, A., Jbilou, K., Sadok, H.: A block version of BiCGSTAB for linear systems with multiple right-hand sides. Electron. Trans. Numer. Anal. 16, 129–142 (2003)MathSciNetMATHGoogle Scholar
- 6.Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)CrossRefMATHGoogle Scholar
- 7.Fenu, C., Martin, D., Reichel, L., Rodriguez, G.: Block Gauss and anti-Gauss quadrature with application to networks. SIAM J. Matrix Anal. Appl. 34, 1655–1684 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 8.Fenu, C., Reichel, L., Rodriguez, G.: GCV for Tikhonov regularization via global Golub–Kahan decomposition. Numer. Linear Algebra Appl. 23, 467–484 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 9.Galatsanos, N.P., Katsaggelos, A.K., Chin, R.T., Hillary, A.D.: Least squares restoration of multichannel images. IEEE Trans. Signal Proc. 39, 2222–2236 (1991)CrossRefGoogle Scholar
- 10.Gallivan, K., Heath, M., Ng, E., Peyton, B., Plemmons, R., Ortega, J., Romine, C., Sameh, A., Voigt, R.: Parallel Algorithms for Matrix Computations. SIAM, Philadelphia (1990)MATHGoogle Scholar
- 11.Gazzola, S., Novati, P., Russo, M.R.: On Krylov projection methods and Tikhonov regularization. Electron. Trans. Numer. Anal. 44, 83–123 (2015)MathSciNetMATHGoogle Scholar
- 12.Gazzola, S., Onunwor, E., Reichel, L., Rodriguez, G.: On the Lanczos and Golub–Kahan reduction methods applied to discrete ill-posed problems. Numer. Linear Algebra Appl. 23, 187–204 (2016)MathSciNetCrossRefMATHGoogle Scholar
- 13.Golub, G.H., Luk, F.T., Overton, M.L.: A block Lanczos method for computing the singular values and corresponding singular vectors of a matrix. ACM Trans. Math. Softw. 7, 149–169 (1981)CrossRefMATHGoogle Scholar
- 14.Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton University Press, Princeton (2010)MATHGoogle Scholar
- 15.Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)CrossRefGoogle Scholar
- 16.Hansen, P.C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algorithms 46, 189–194 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 17.Hansen, P.C., Nagy, J., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)CrossRefMATHGoogle Scholar
- 18.Jbilou, K., Sadok, H., Tinzefte, A.: Oblique projection methods for linear systems with multiple right-hand sides. Electron. Trans. Numer. Anal. 20, 119–138 (2005)MathSciNetMATHGoogle Scholar
- 19.Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)MathSciNetMATHGoogle Scholar
- 20.Kindermann, S.: Discretization independent convergence rates for noise level-free parameter choice rules for the regularization of ill-conditioned problems. Electron. Trans. Numer. Anal. 40, 58–81 (2013)MathSciNetMATHGoogle Scholar
- 21.Li, F., Ng, M.K., Plemmons, R.J.: Coupled segmentation and denoising/deblurring for hyperspectral material identification. Numer. Linear Algebra Appl. 19, 15–17 (2012)MathSciNetMATHGoogle Scholar
- 22.Meng, J., Zhu, P.-Y., Li, H.-B.: A block GCROT(m, k) method for linear systems with multiple right-hand sides. J. Comput. Appl. Math. 255, 544–554 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 23.Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8, 43–71 (1982)MathSciNetCrossRefMATHGoogle Scholar
- 24.Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer. Algorithms 63, 65–87 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 25.Saad, Y.: On the Lanczos method for solving symmetric linear systems with several right-hand sides. Math. Comp. 48, 651–662 (1987)MathSciNetMATHGoogle Scholar
- 26.Toutounian, F., Karimi, S.: Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides. Appl. Math. Comput. 178, 452–460 (2006)MathSciNetMATHGoogle Scholar