Advertisement

Biology & Philosophy

, 34:27 | Cite as

Ancient genetics to ancient genomics: celebrity and credibility in data-driven practice

  • Elizabeth D. JonesEmail author
Article
Part of the following topical collections:
  1. Paleobiology and Philosophy

Abstract

“Ancient DNA Research” is the practice of extracting, sequencing, and analyzing degraded DNA from dead organisms that are hundreds to thousands of years old. Today, many researchers are interested in adapting state-of-the-art molecular biological techniques and high-throughput sequencing technologies to optimize the recovery of DNA from fossils, then use it for studying evolutionary history. However, the recovery of DNA from fossils has also fueled the idea of resurrecting extinct species, especially as its emergence corresponded with the book and movie Jurassic Park in the 1990s. In this paper, I use historical material, interviews with scientists, and philosophical literature to argue that the search for DNA from fossils can be characterized as a data-driven and celebrity-driven practice. Philosophers have recently argued the need to seriously consider the role of data-driven inquiry in the sciences, and likewise, this history highlights the need to seriously consider the role of celebrity in shaping the kind of research that gets pursued, funded, and ultimately completed. On this point, this history highlights that the traditional philosophical and scientific distinctions between data-driven and hypothesis-driven research are not always useful for understanding the process and practice of science. Consequently, I argue that the celebrity status of a particular research practice can be considered as a “serious epistemic strategy” that researchers, as well as editors and funders, employ when making choices about their research and publication processes. This interplay between celebrity and methodology matters for the epistemology of science.

Keywords

Ancient DNA Genetics Genomics Celebrity Credibility Data-driven research Jurassic Park 

Notes

Acknowledgements

Funding for this research was provided by the University College London (UCL) Overseas Research Scholarship, the UCL Graduate Research Scholarship, and the UCL Cross-Disciplinary Training Scholarship. Funding was also provided by the British Society for the History of Science, the History of Science Society, the UCL Department of Science and Technology Studies, the UCL Department of Genetics, Evolution and Environment, and the Division of Paleontology at the American Museum of Natural History. Thank you to Joe Cain and the Department of Science and Technology Studies, Mark Thomas and the Molecular and Cultural Evolution Lab, and Anjali Goswami’s Lab for their dedication to developing this research project. Most importantly, thank you to the scientists, my interviewees, who gave much of their time and thoughts to this project. This research would not be possible without the information, documentation, and quotations they openly provided. My appreciation also goes to colleagues at two workshops, the UK Integrated History and Philosophy of Science Workshop (2017) at the University of Nottingham in England and the Philosophy of Paleontology Workshop (2017) at the University of Calgary in Canada, where the ideas in this article were presented and discussed. In regards to the latter workshop, I am especially appreciative of Adrian Currie and colleagues who offered vital feedback on drafts of this article for this special issue. Finally, thank you to Lucy van Dorp for her corrections and comments, and thank you to the two reviewers whose thorough readings and recommendations have bettered the overall argument.

References

  1. Allentoft ME, Sikora M, Sjögren K-G, Rasmussen S, Rasmussen M, Stenderup J, Damgaard PB et al (2015) Population genomics of bronze age Eurasia. Nature 522(7555):167–172CrossRefGoogle Scholar
  2. Ancient DNA: The First Three Decades (2013) The Royal Society, LondonGoogle Scholar
  3. Ancient DNA: The Recovery and Analysis of DNA Sequences from Archaeological Material and Museum Specimens (1991) Nottingham, England. Elizabeth Jones Personal Collection (File from Richard Thomas)Google Scholar
  4. Atkinson R, Flint J (2001) Accessing hidden and hard-to-reach populations: snowball research strategies. Soc Res Update 33:1–4Google Scholar
  5. Austin JJ, Ross AJ, Smith AB, Fortey RA, Thomas RH (1997) Problems of reproducibility—does geologically ancient DNA survive in amber-preserved insects? Proc R Soc Ser B Biol Sci 264(1381):467–474CrossRefGoogle Scholar
  6. Benton M (1985) To clone a Dinosaur. New Sci 105:41–43Google Scholar
  7. Bollongino R, Edwards CJ, Alt KW, Burger J, Bradley DG (2006) Early history of European domestic cattle as revealed by ancient DNA. Biol Let 2(1):155–159CrossRefGoogle Scholar
  8. Bos KI, Schuenemann VJ, Brian Golding G, Burbano HA, Waglechner N, Coombes BK, McPhee JB et al (2011) A draft genome of Yersinia pestis from victims of the Black Death. Nature 478(7370):506–510CrossRefGoogle Scholar
  9. Bösl E (2017a) Doing Ancient DNA: Zur Wissenschaftsgeschichte Der aDNA-Forschung. Verlag, BielefeldCrossRefGoogle Scholar
  10. Bösl E (2017b) Zur Wissenschaftsgeschichte Der aDNA-Forschung. NTM Zeitschrift Für Geschichte Der Wissenschaften, Technik Und Medizin 25(1):99–142CrossRefGoogle Scholar
  11. Bramanti B, Thomas MG, Haak W, Unterlaender M, Jores P, Tambets K, Antanaitis-Jacobs I et al (2009) Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers. Science 326(5949):137–140CrossRefGoogle Scholar
  12. Broks P (2006) Understanding popular science. Open University Press, MaidenheadGoogle Scholar
  13. Browne MW (1991) Scientists study ancient DNA for glimpses of past worlds. The New York Times, June 25Google Scholar
  14. Browne MW (1993a) DNA from the age of dinosaurs is found. The New York Times, 10 June. http://www.nytimes.com/1993/06/10/us/dna-from-the-age-of-dinosaurs-is-found.html
  15. Browne MW (1993b) Cells of dinosaurs apparently found. The New York Times, 1 July. http://www.nytimes.com/1993/07/01/us/cells-of-dinosaur-apparently-found.html
  16. Bucchi M, Trench B (2014) Routledge handbook of public communication of science and technology, 2nd edn. Routledge, AbingdonCrossRefGoogle Scholar
  17. Burger J, Kirchner M, Bramanti B, Haak W, Thomas MG (2007) Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proc Natl Acad Sci USA 104(10):3736–3741CrossRefGoogle Scholar
  18. Burian RM (1997) Exploratory experimentation and the role of histochemical techniques in the work of jean brachet, 1938–1952. Hist Philos Life Sci 19(1):27–45Google Scholar
  19. Callaway E (2015a) DNA data explosion lights up the bronze age. Nature 522(7555):140–141CrossRefGoogle Scholar
  20. Callaway E (2015b) Genome archaeologist. Nature 528:464–465Google Scholar
  21. Callaway E (2018) Divided by DNA: the uneasy relationship between archaeology and ancient genomics. Nature 555(7698):573–576CrossRefGoogle Scholar
  22. Callebaut W (2012) Scientific perspectivism: a philosopher of science’s response to the challenge of big data biology. Stud Hist Philos Biol Biomed Sci 43(1):69–80CrossRefGoogle Scholar
  23. Calvert J (2012) Systems biology, synthetic biology and data-driven research: a commentary on Krohs, Callebaut, and O’Malley and Soyer. Stud Hist Philos Biol Biomed Sci 43(1):81–84CrossRefGoogle Scholar
  24. Cano RJ, Poinar HN, Poinar GO Jr (1992) Isolation and partial characterization of DNA from the bee Proplebeia dominicana (Apidae: Hymenoptera) in 25-40 million year old amber. Med Sci Res 20(7):249–251Google Scholar
  25. Cano RJ, Poinar HN, Pieniazek NJ, Acra A, Poinar GO Jr (1993) Amplification and sequencing of DNA from a 120–135-million-year-old weevil. Nature 363(6429):536–538CrossRefGoogle Scholar
  26. Chapman R, Wylie A (2016) Evidential reasoning in archaeology. Bloomsbury Publishing, LondonGoogle Scholar
  27. Clifton L (1984) Mad scientists are cloning dinosaurs as weapons of the future. National Examiner, 7 August . Elizabeth Jones Personal Collection (File from Russell Higuchi)Google Scholar
  28. Cooper A (2006) The year of the mammoth. PLoS Biol 4(3):0311–0313CrossRefGoogle Scholar
  29. Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289(5482):1139CrossRefGoogle Scholar
  30. Currie A (2018) Rock, Bone, and Ruin: an optimist’s guide to the historical sciences. MIT Press, CambridgeCrossRefGoogle Scholar
  31. Currie A, Sterelny K (2017) In defence of story-telling. Stud Hist Philos Biol Biomed Sci 62:14–21CrossRefGoogle Scholar
  32. Der Sarkissian C, Allentoft ME, Avila-Arcos MC, Barnett R, Campos PF, Cappellini E, Ermini L et al (2015) Ancient genomics. Philos Trans R Soc Lond B Biol Sci 370(1660):1–12Google Scholar
  33. DeSalle R, Lindley D (1997) The science of Jurassic Park and The Lost World or how to build a dinosaur. Basic Books, New YorkGoogle Scholar
  34. DeSalle R, Gatesy J, Wheeler W, Grimaldi D (1992) DNA sequences from a fossil termite in Oligo–Miocene amber and their phylogenetic implications. Science 257(5078):1933–1936CrossRefGoogle Scholar
  35. Elliott KC, Cheruvelil KS, Montgomery GM, Soranno PA (2016) Conceptions of good science in our data-rich world. Bioscience 66(10):1–10CrossRefGoogle Scholar
  36. Evans J, Hesmondhalgh D (2005) Understanding media: inside celebrity. Open University Press, MaidenheadGoogle Scholar
  37. Fahy D (2015) The new celebrity scientists: out of the lab and into the limelight. Rowman and Littlefield, LanhamGoogle Scholar
  38. Feyerabend P (1975) Against method. New Left Books, LondonGoogle Scholar
  39. Freedman J, van Dorp L, Brace S (2017) Destructive sampling natural science collections: an overview for museum professionals and researchers. Journal of Natural Science Collections 5:1–14Google Scholar
  40. Gibbons A (1994) Possible dino DNA greeted with skepticism. Science 266:1159CrossRefGoogle Scholar
  41. Gibbons A (2012) A crystal-clear view of an extinct girl’s genome. Science 337(August):1028–1029CrossRefGoogle Scholar
  42. Gibbons A (2015) Revolution in human evolution. Science 349(6246):362–366CrossRefGoogle Scholar
  43. Gieryn TF (1983) Boundary-work and the demarcation of science from non-science: strains and interests in professional ideologies of scientists. Am Sociol Rev 48(6):781–795CrossRefGoogle Scholar
  44. Gieryn TF (1999) Cultural boundaries of science: credibility on the line. Univeristy of Chicago Press, ChicagoGoogle Scholar
  45. Gilbert MTP, Bandelt HJ, Hofreiter M, Barnes I (2005) Assessing Ancient DNA Studies. Trends Ecol Evol 20(10):541–544CrossRefGoogle Scholar
  46. Gilbert MTP, Drautz DI, Lesk AM, Ho SYW, Qi J, Ratan A, Hsu C-H et al (2008a) Intraspecific phylogenetic analysis of Siberian woolly mammoths using complete mitochondrial genomes. Proc Natl Acad Sci USA 105(24):8327–8332CrossRefGoogle Scholar
  47. Gilbert MTP, Kivisild T, Grønnow B, Andersen PK, Metspalu E, Reidla M, Tamm E et al (2008b) Paleo-Eskimo mtDNA genome reveals matrilineal discontinuity in Greenland. Science 320(5884):1787–1789CrossRefGoogle Scholar
  48. Glass DJ, Hall N (2008) A brief history of the hypothesis. Cell 134(3):378–381CrossRefGoogle Scholar
  49. Gokhman D, Lavi E, Prufer K, Fraga MF, Riancho JA, Kelso J, Paabo S, Meshorer E, Carmel L (2014) Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science 344(6183):523–527CrossRefGoogle Scholar
  50. Golenberg EM, Giannasi DE, Clegg MT, Smiley CJ, Durbin M, Henderson D, Zurawski G (1990) Chloroplast DNA sequence from a Miocene Magnolia species. Nature 344:656–658CrossRefGoogle Scholar
  51. Goodell R (1975) The visible scientists. Little, Brown and Company, BostonGoogle Scholar
  52. Gould SJ (1996) Dinomania. In: Dinosaur in a Haystack: reflections in natural history. Jonathan Cape, London, pp 221–237Google Scholar
  53. Graves GR, Braun MJ (1992) Museums: storehouse of DNA? Science 255(5050):1335–1336CrossRefGoogle Scholar
  54. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N et al (2010) A draft sequence of the Neandertal genome. Science 328(5979):710–722CrossRefGoogle Scholar
  55. Gregory J, Miller S (1998) Science in public: communication, culture, and credibility. Basic Books, CambridgeGoogle Scholar
  56. Haak W, Forster P, Bramanti B, Matsumura S, Brandt G, Tänzer M, Villems R et al (2005) Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science 310(5750):1016–1018Google Scholar
  57. Haak W, Balanovsky O, Sanchez JJ, Koshel S, Zaporozhchenko V, Adler CJ, Der Sarkissian CSI et al (2010) Ancient DNA from European early neolithic farmers reveals their near eastern affinities. PLoS Biol 8(11):1–16CrossRefGoogle Scholar
  58. Hagelberg E, Hofreiter M, Keyser C (2015) Introduction. Ancient DNA: the first three decades. Philos Trans R Soc Lond B Biol Sci 370(1660):1–6Google Scholar
  59. Handt O, Richards M, Trommsdorff M, Kilger C, Simanainen J, Georgiev O, Bauer K et al (1994) Molecular genetic analyses of the Tyrolean Ice Man. Science 264(5166):1775–1778CrossRefGoogle Scholar
  60. Haufe C (2013) Why do funding agencies favor hypothesis testing? Stud Hist Philos Sci 44:363–374CrossRefGoogle Scholar
  61. Hebsgaard MB, Phillips MJ, Willerslev E (2005) Geologically ancient DNA: fact or artefact? Trends Microbiol 13(5):212–220CrossRefGoogle Scholar
  62. Hedges S Blair, Schweitzer M (1995) Detecting dinosaur DNA. Science 268(5214):1191–1192CrossRefGoogle Scholar
  63. Higuchi R, Bowman B, Freiberger M, Ryder OA, Wilson AC (1984) DNA sequences from the quagga, an extinct member of the horse family. Nature 312:282–284CrossRefGoogle Scholar
  64. Hjortrup PB, Haase N, Wetterslev J, Perner A (2016) Gone fishing in a fluid trial. Critic Care Resusc J Austr Acad Critic Care Med 18(1):55–58Google Scholar
  65. Horner JR, Vyse E (1993) An attempt to extract DNA from the cretaceous dinosaur tyrannosaurus rex. National Science Foundation. https://www.nsf.gov/awardsearch/showAward?AWD_ID=9311542. Accessed 1 Dec 2018
  66. Ion A (2017) How interdisciplinary is interdisciplinary? Revisiting the impact of a DNA research for the archaeology of human remains. Curr Swed Archaeol 25:87–108Google Scholar
  67. Itan Y, Powell A, Beaumont MA, Burger J, Thomas MG (2009) The origins of lactase persistence in Europe. PLoS Comput Biol 5(8):17–19CrossRefGoogle Scholar
  68. Izagirre N, de la Rúa C (1999) An mtDNA analysis in ancient Basque populations: implications for haplogroup V as a marker for a major Paleolithic expansion from southwestern Europe. Am J Hum Genet 65(1):199–207CrossRefGoogle Scholar
  69. Jeffreys AJ (1984) Raising the dead and buried. Nature 312:198CrossRefGoogle Scholar
  70. Jones E (2017) The search for ancient DNA in the media limelight: a case study of celebrity science. Ph.D. thesis, University College LondonGoogle Scholar
  71. Jones ED (2018) Ancient DNA: a history of the science before Jurassic Park. Stud Hist Philos Biol Biomed Sci 68–69:1–14CrossRefGoogle Scholar
  72. Jones BL, Oljira T, Liebert A, Zmarz P, Montalva N, Tarekeyn A, Ekong R et al (2015) Diversity of lactase persistence in African milk drinkers. Hum Genet 134(8):917–925CrossRefGoogle Scholar
  73. Jurassic Park (1993) (2017) IMDb. http://www.imdb.com/title/tt0107290/. Accessed 1 Feb
  74. Keating P, Cambrosio A (2012) Too many numbers: microarrays in clinical cancer research. Stud Hist Philos Biol Biomed Sci 43(1):37–51CrossRefGoogle Scholar
  75. Kell DB, Oliver SG (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis‐driven science in the post‐genomic era. BioEssays 26(1):99–105CrossRefGoogle Scholar
  76. King PH (1993) Step right up and see the science. Los Angeles Times, 16 June. http://articles.latimes.com/1993-06-16/news/mn-3654_1_dna-research
  77. King TE, Fortes GG, Balaresque P, Thomas MG, Balding D, Delser PM, Neumann R et al (2014) Identification of the remains of King Richard III. Nat Commun 5(December):5631CrossRefGoogle Scholar
  78. Kirby DA (2003a) Science consultants, fictional films, and scientific practice. Soc Stud Sci 33(2):231–268CrossRefGoogle Scholar
  79. Kirby DA (2003b) Scientists on the set: Science consultants and the communication of science in visual fiction. Publ Underst Sci 12:261–278CrossRefGoogle Scholar
  80. Kirby DA (2013) Lab coats in hollywood: science, scientists, and cinema. MIT Press, CambridgeGoogle Scholar
  81. Kirby D (2014) Science and technology in film: themes and representations. In: Bucchi M, Trench B (eds) Routledge handbook of public communication of science and technology. Taylor and Francis, AbingdonGoogle Scholar
  82. Knapp M, Hofreiter M (2010) Next generation sequencing of ancient DNA: requirements, strategies and perspectives. Genes 1(2):227–243CrossRefGoogle Scholar
  83. Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Pääbo S (2010) The complete mitochondrial DNA genome of an unknown hominin from Southern Siberia. Nature 464(7290):894–897CrossRefGoogle Scholar
  84. Krohs U (2012) Convenience experimentation. Stud Hist Philos Biol Biomed Sci 43(1):52–57CrossRefGoogle Scholar
  85. Kuhn T (1962) The structure of scientific revolutions. Univeristy of Chicago Press, ChicagoGoogle Scholar
  86. Lakatos I (1970) Falsification and the methodology of research program. In: Lakatos I, Musgrave A (eds) Criticism and the growth of knowledge. Cambridge University Press, Cambridge, pp 91–197CrossRefGoogle Scholar
  87. Larson G, Albarella U, Dobney K, Rowley-Conwy P, Schibler J, Tresset A, Vigne J-D et al (2007) Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proc Natl Acad Sci USA 104(39):15276–15281CrossRefGoogle Scholar
  88. Larson G, Karlsson EK, Perri A, Webster MT, Ho SYW, Peters J, Stahl PW et al (2012) Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proc Natl Acad Sci USA 109(23):8878–8883CrossRefGoogle Scholar
  89. Larson G, Piperno DR, Allaby RG, Purugganan MD, Andersson L, Arroyo-Kalin M, Barton L et al (2014) Current perspectives and the future of domestication studies. Proc Natl Acad Sci USA 111(17):6139–6146CrossRefGoogle Scholar
  90. Laudan L (1981) Science and hypothesis: historical essays on scientific methodology. Reidel, LondonCrossRefGoogle Scholar
  91. Leonard JA, Wayne RK, Wheeler J, Valadez R, Guillén S, Vilà C (2002) Ancient DNA evidence for Old World origin of New World dogs. Science 298(5598):1613–1616CrossRefGoogle Scholar
  92. Leonelli S (2012) Introduction: making sense of data-driven research in the biological and biomedical sciences. Stud Hist Philos Biol Biomed Sci 43(1):1–3CrossRefGoogle Scholar
  93. Leonelli S (2016) Data-centric biology: a philosophical study. Univeristy of Chicago Press, ChicagoCrossRefGoogle Scholar
  94. Leonelli S, Ankeny RA (2012) Re-thinking organisms: the impact of databases on model organism biology. Stud Hist Philos Biol Biomed Sci 43(1):29–36CrossRefGoogle Scholar
  95. Lindahl T (1993a) Instability and decay of the primary structure of DNA. Nature 362:709–715CrossRefGoogle Scholar
  96. Lindahl T (1993b) Recovery of antediluvian DNA. Nature 365(6448):700CrossRefGoogle Scholar
  97. Lister AM (1994) Ancient DNA: not quite Jurassic Park. Trends Ecol Evol 9(3):82–84CrossRefGoogle Scholar
  98. Macintyre B (1993) Fossil find brings Jurassic Park closer. The Times, 2 JulyGoogle Scholar
  99. Malmström H, Linderholm A, Skoglund P, Storå J, Sjödin P, Gilbert MTP, Holmlund G et al (2015) Ancient mitochondrial DNA from the northern fringe of the Neolithic farming expansion in Europe sheds light on the dispersion process. Philos Trans R Soc Lond Ser B Biol Sci 370(1660):1–10Google Scholar
  100. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(September):376–380CrossRefGoogle Scholar
  101. Martin J (2017) Prestige asymmetry in American physics: aspirations, applications, and the Purloined Letter effect. Sci Context 30(4):475CrossRefGoogle Scholar
  102. Mathieson I, Alpaslan-Roodenberg S, Posth C, Szécsényi-Nagy A, Rohland N, Mallick S, Olalde I et al (2018) The genomic history of southeastern Europe. Nature 555(7695):197–203CrossRefGoogle Scholar
  103. Miller W, Drautz DI, Ratan A, Pusey B, Qi J, Tomsho LP et al (2008) Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456(7220):387–390CrossRefGoogle Scholar
  104. Molecular Paleontology: Search for Fossil DNA (1984) National Science Foundation Grant. Elizabeth Jones Personal Collection (File from Russeull Higuchi)Google Scholar
  105. Morell V (1993) Dino DNA: the hunt and the hype. Science 261(5118):160–162CrossRefGoogle Scholar
  106. Muller-Wille S, Charmantier I (2012) Natural history and information overload: the case of Linnaeus. Stud Hist Philos Biol Biomed Sci 43(1):4–15CrossRefGoogle Scholar
  107. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350CrossRefGoogle Scholar
  108. Nelkin D (1995) Selling science: how the press covers science and technology. W. H. Freeman and Company, New YorkGoogle Scholar
  109. O’Malley MA (2007) Exploratory experimentation and scientific practice: metagenomics and the proteorhodopsin case. Hist Philos Life Sci 29(3):337–360Google Scholar
  110. O’Malley MA, Soyer OS (2012) The roles of integration in molecular systems biology. Stud Hist Philos Biol Biomed Sci 43(1):58–68CrossRefGoogle Scholar
  111. O’Malley MA, Elliott KC, Haufe C, Burian RM (2009) Philosophies of funding. Cell 138(4):611–615CrossRefGoogle Scholar
  112. Olalde I, Brace S, Allentoft ME, Armit I, Kristiansen K, Booth T, Rohland N et al (2018) The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555(7695):190–196CrossRefGoogle Scholar
  113. Pääbo S, Higuchi RG, Wilson AC (1989) Ancient DNA and the polymerase chain reaction. J Biol Chem 264(17):9709–9712Google Scholar
  114. Pääbo S, Poinar H, Serre D, Jaenicke-Després V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38(1):645–679CrossRefGoogle Scholar
  115. Pedersen JS, Valen E, Vargas AM, Velazquez BJ, Parker MR, Lindgreen S, Lilje B et al (2014) Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome. Genome Res 24(3):454–466CrossRefGoogle Scholar
  116. Pellegrino C (1985) Dinosaur capsule. Omni 7:38–40Google Scholar
  117. Poinar GO Jr, Poinar R (1994) The quest for life in amber. Perseus Publishing, CambridgeGoogle Scholar
  118. Poinar GO Jr, Poinar HN, Cano RJ (1994) DNA from amber inclusions. In: Herrmann B, Hummel S (eds) Ancient DNA: recovery and analysis of genetic material from paleontological, archaeological, museum, medical, and forensic specimens. Springer, New York, pp 92–103CrossRefGoogle Scholar
  119. Poinar HN, Schwarz C, Qi J, Shapiro B, Macphee RDE, Buigues B, Tikhonov A et al (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311(2006):392–394CrossRefGoogle Scholar
  120. Popper K (1959) The logic of scientific discovery. Routledge, LondonGoogle Scholar
  121. Rabinow P (1996) Making PCR: a story of biotechnology. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  122. Radder H (2010) The commodification of academic research: science and the modern university. University of Pittsburgh Press, PittsburghCrossRefGoogle Scholar
  123. Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, Moltke I, Metspalu M et al (2010) Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463(7282):757–762CrossRefGoogle Scholar
  124. Rasmussen M, Guo X, Wang Y, Lohmueller KE, Rasmussen S, Albrechtsen A, Skotte L et al (2011) An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334(6052):94–98CrossRefGoogle Scholar
  125. Rasmussen M, Anzick SL, Waters MR, Skoglund P, DeGiorgio M, Stafford TW, Rasmussen S et al (2014) The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506(7487):225–229CrossRefGoogle Scholar
  126. Reich D (2018) Who we are and how we got here: ancient DNA and the new science of the human past. Pantheon Books, New YorkGoogle Scholar
  127. Reich D, Green RE, Kircher M, Krause J, Patterson N, Durand EY, Viola B et al (2010) Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468(7327):1053–1060CrossRefGoogle Scholar
  128. Rensberger B (1992) Entombed in amber, ancient DNA hints of ‘Jurassic Park’. The Washington Post, 25 Sept. https://www.washingtonpost.com/archive/politics/1992/09/25/entombed-in-amber-ancient-dna-hints-of-jurassic-park/7309d11f-8d62-4589-ba8e-a493392dc6e9/
  129. Rödder S, Franzen M, Weingart P (eds) (2012) The sciences’ media connection—public communication and its repercussions. Springer, DordrechtGoogle Scholar
  130. Rojek C (2001) Celebrity. Reaktion Books, LondonGoogle Scholar
  131. Scheu A, Hartz S, Schmolcke U, Tresset A, Burger J, Bollongino R (2008) Ancient DNA provides no evidence for independent domestication of cattle in Mesolithic Rosenhof, Northern Germany. J Archaeol Sci 35(5):1257–1264CrossRefGoogle Scholar
  132. Service RF (1996) Just how old is that DNA, anyway? Science 272(5263):810CrossRefGoogle Scholar
  133. Shapiro B (2015) How to clone a mammoth: the science of de-extinction. Princeton University Press, PrincetonCrossRefGoogle Scholar
  134. Skoglund P, Malmström H, Raghavan M, Storå J, Hall P, Eske Willerslev M, Gilbert TP, Götherström A, Jakobsson M (2012) Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336(6080):466–469CrossRefGoogle Scholar
  135. Skoglund P, Ersmark E, Palkopoulou E, Dalén L (2015) Ancient wolf genome reveals an early divergence of domestic dog ancestors and admixture into high-latitude breeds. Curr Biol 25:1–5CrossRefGoogle Scholar
  136. Steinle F (1997) Entering new fields: exploratory uses of experimentation. Philos Sci 64:S65–S74CrossRefGoogle Scholar
  137. Stoneking M, Krause J (2011) Learning about human population history from ancient and modern genomes. Nat Rev Genet 12(9):603–614CrossRefGoogle Scholar
  138. Strasser BJ (2012) Data-driven sciences: From wonder cabinets to electronic databases. Stud Hist Philos Biol Biomed Sci 43:85–87CrossRefGoogle Scholar
  139. Stringer C (2012) Lone survivors: how we came to be the only humans on earth. St. Martin’s, New YorkGoogle Scholar
  140. Tkach JR (1983) The extinct DNA newsletter. Elizabeth Jones Personal Collection (File from John Tkach)Google Scholar
  141. Turner G (2004) Understanding celebrity. SAGE Publications, LondonCrossRefGoogle Scholar
  142. Turner D (2011) Paleontology: a philosophical introduction. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  143. Veeramah KR, Hammer MF (2014) The impact of whole-genome sequencing on the reconstruction of human population history. Nat Rev 15:149–162CrossRefGoogle Scholar
  144. Warinner C, Hendy J, Speller C, Cappellini E, Fischer R, Trachsel C, Arneborg J et al (2014) Direct evidence of milk consumption from ancient human dental calculus. Sci Rep 4(7104):1–6Google Scholar
  145. Wayne R, Cooper A (eds) (1992) Ancient DNA Newsletter 1(2)1–41. Institute of Zoology, London. Elizabeth Jones Personal Collection (Files from Richard Thomas and Terry Brown)Google Scholar
  146. Weinberg R (2010) Point: hypotheses first. Nature 464(7289):678CrossRefGoogle Scholar
  147. Willerslev E, Hansen AJ, Poinar HN (2004) Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evolutionol Evol 19(3):140–147Google Scholar
  148. Willerslev E, Davison J, Moora M, Zobel M, Coissac E, Edwards ME, Lorenzen ED et al (2014) Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506(7486):47–51CrossRefGoogle Scholar
  149. Woodward SR, Weyand NJ, Bunnell M (1994) DNA sequence from cretaceous period bone fragments. Science 266(5188):1229–1232CrossRefGoogle Scholar
  150. Wray B (2017) Rise of the Necrofauna: a provocative look at the science, ethics, and risks of de-extinction. Greystone Books, VancouverGoogle Scholar
  151. Zischler H, Höss M, Handt O, von Haeseler A, van der Kuyl AC, Goudsmit J, Pääbo S (1995) Detecting dinosaur DNA. Science 268(5214):1192–1193CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Science and Technology StudiesUniversity College LondonLondonUK
  2. 2.Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
  3. 3.North Carolina Museum of Natural SciencesHistory of Science Research LabRaleighUSA

Personalised recommendations