Advertisement

Biology & Philosophy

, 34:12 | Cite as

Mutationism, not Lamarckism, captures the novelty of CRISPR–Cas

  • Jeremy G. Wideman
  • S. Andrew Inkpen
  • W. Ford DoolittleEmail author
  • Rosemary J. Redfield
Article
  • 13 Downloads

Abstract

Koonin, in an article in this issue, claims that CRISPR–Cas systems are mechanisms for the inheritance of acquired adaptive characteristics, and that the operation of such systems comprises a “Lamarckian mode of evolution.” We argue that viewing the CRISPR–Cas mechanism as facilitating a form of “directed mutation” more accurately represents how the system behaves and the history of neoDarwinian thinking, and is to be preferred.

Keywords

Lamarckian Evolution CRISPR–Cas Directed mutation Mutationism 

Notes

Acknowledgements

Funding was provided by Natural Sciences and Engineering Research Council of Canada (Grant No. GLDSU447989).

References

  1. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712.  https://doi.org/10.1126/science.1138140 CrossRefGoogle Scholar
  2. Beatty J (2006) Chance variation: Darwin on orchids. Philos Sci 73:629–641.  https://doi.org/10.1086/518332 CrossRefGoogle Scholar
  3. Beatty J (2016) The creativity of natural selection? Part I: Darwin, Darwinism, and the mutationists. J Hist Biol 49:659–684.  https://doi.org/10.1007/s10739-016-9456-5 CrossRefGoogle Scholar
  4. Beisson J, Sonneborn TM (1965) Cytoplasmic inheritance of the organization of the cell cortex in Paramecium aurelia. Proc Natl Acad Sci USA 53:275–282CrossRefGoogle Scholar
  5. Burkhardt RW (2013) Lamarck, evolution, and the inheritance of acquired characters. Genetics 194:793–805.  https://doi.org/10.1534/genetics.113.151852 CrossRefGoogle Scholar
  6. Cairns J, Overbaugh J, Miller S (1988) The origin of mutants. Nature 335:142–145.  https://doi.org/10.1038/335142a0 CrossRefGoogle Scholar
  7. Deichmann U (2016) Epigenetics: the origins and evolution of a fashionable topic. Dev Biol 416:249–254.  https://doi.org/10.1016/j.ydbio.2016.06.005 CrossRefGoogle Scholar
  8. Gissis S, Jablonka E (2011) Transformations of Lamarckism: from subtle fluids to molecular biology. MIT Press, CambridgeCrossRefGoogle Scholar
  9. Gould SJ (1977) Ever since Darwin: reflections in natural history. Norton, New YorkGoogle Scholar
  10. Griffith F (1928) The significance of pneumococcal types. J Hyg (Lond) 27:113–159CrossRefGoogle Scholar
  11. Haag KL (2018) Holobionts and their hologenomes: evolution with mixed modes of inheritance. Genet Mol Biol 41:189–197.  https://doi.org/10.1590/1678-4685-gmb-2017-0070 CrossRefGoogle Scholar
  12. Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109.  https://doi.org/10.1016/j.cell.2014.02.045 CrossRefGoogle Scholar
  13. Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232CrossRefGoogle Scholar
  14. Hutchison CA, Phillips S, Edgell MH et al (1978) Mutagenesis at a specific position in a DNA sequence. J Biol Chem 253:6551–6560Google Scholar
  15. Koonin EV (2018) CRISPR: a new principle of genome engineering linked to conceptual shifts in evolutionary biology. Biol Philos.  https://doi.org/10.1007/s10539-018-9658-7 CrossRefGoogle Scholar
  16. Koonin EV, Wolf YI (2016) Just how Lamarckian is CRISPR–Cas immunity: the continuum of evolvability mechanisms. Biol Direct 11:9.  https://doi.org/10.1186/s13062-016-0111-z CrossRefGoogle Scholar
  17. Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA 95:9413–9417CrossRefGoogle Scholar
  18. Lennox JG (2010) The Darwin/Gray correspondence 1857–1869: an intelligent discussion about chance and design. Perspect Sci 18:456–479.  https://doi.org/10.1162/POSC_a_00018 CrossRefGoogle Scholar
  19. Levinson G, Gutman GA (1987) High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res 15:5323–5338CrossRefGoogle Scholar
  20. Martin WF (2017) Too much eukaryote LGT. BioEssays 39:1700115.  https://doi.org/10.1002/bies.201700115 CrossRefGoogle Scholar
  21. Martin WF (2018) Eukaryote lateral gene transfer is Lamarckian. Nat Ecol Evol 2:754.  https://doi.org/10.1038/s41559-018-0521-7 CrossRefGoogle Scholar
  22. Nei M (2013) Mutation-driven evolution. Oxford University Press, OxfordGoogle Scholar
  23. Penny D (2015) Epigenetics, Darwin, and Lamarck. Genome Biol Evol 7:1758–1760.  https://doi.org/10.1093/gbe/evv107 CrossRefGoogle Scholar
  24. Rosenberg SM (2001) Evolving responsively: adaptive mutation. Nat Rev Genet 2:504–515.  https://doi.org/10.1038/35080556 CrossRefGoogle Scholar
  25. Shapiro JA (1984) Observations on the formation of clones containing araB-lacZ cistron fusions. Mol Gen Genet 194:79–90CrossRefGoogle Scholar
  26. Stoltzfus A, Cable K (2014) Mendelian-mutationism: the forgotten evolutionary synthesis. J Hist Biol 47:501–546.  https://doi.org/10.1007/s10739-014-9383-2 CrossRefGoogle Scholar
  27. Weiss A (2015) Lamarckian illusions. Trends Ecol Evol 30:566–568.  https://doi.org/10.1016/j.tree.2015.08.003 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jeremy G. Wideman
    • 1
  • S. Andrew Inkpen
    • 1
    • 2
  • W. Ford Doolittle
    • 1
    Email author
  • Rosemary J. Redfield
    • 3
  1. 1.Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada
  2. 2.Department of PhilosophyDalhousie UniversityHalifaxCanada
  3. 3.Department of ZoologyUniversity of British ColumbiaVancouverCanada

Personalised recommendations