Leaf senescence in response to elevated atmospheric CO2 concentration and low nitrogen supply

Review
  • 24 Downloads

Abstract

This review reports the physiological and metabolic changes in plants during development under elevated atmospheric carbon dioxide concentration and/or limited-nitrogen supply in order to establish their effects on leaf senescence induction. Elevated CO2 concentration and nitrogen supply modify gene expression, protein content and composition, various aspects of photosynthesis, sugar metabolism, nitrogen metabolism, and redox state in plants. Elevated CO2 usually causes sugar accumulation and decreased nitrogen content in plant leaves, leading to imbalanced C/N ratio in mature leaves, which is one of the main factors behind premature senescence in leaves. Elevated CO2 and low nitrogen decrease activities of some antioxidant enzymes and thus increase H2O2 production. These changes lead to oxidative stress that results in the degradation of photosynthetic pigments and eventually induce senescence. However, this accelerated leaf senescence under conditions of elevated CO2 and limited nitrogen can mobilize nutrients to growing organs and thus ensure their functionality.

Additional key words

antioxidants C/N ratio gene expression oxidative stress photosynthesis sugars 

Abbreviations

APX

ascorbate peroxidase

Asn

asparagine

Asp

aspartic acid

GDH

glutamate dehydrogenase

Glu

glutamic acid

Gln

glutamine

GS1

cytololic glutamine synthetase

GS2

chloroplastic glutamine synthetase

IPCC

intergovernmental panel on climate change

LHCP

light-harvesting chlorophyll-binding proteins

Rubisco

ribulose-1,5-bisphosphate carboxylase/oxygenase

ROS

reactive oxygen species

SAG

senescence associated gene

SLM

specific leaf mass

SOD

superoxide dismutase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agüera, E., Cabello, P., De la Haba, P.: Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants. — Physiol. Plant. 138: 256–267, 2010.CrossRefPubMedGoogle Scholar
  2. Albacete, A.A., Martínez-Andújar, C., Pérez-Alfocea, F.: Hormonal and metabolic regulation of source-sink relations under salinity and drought: from plant survival to crop yield stability. — Biotechnol. Adv. 32: 12–30, 2014.CrossRefPubMedGoogle Scholar
  3. Aoyama, S., Reyes T.H, Guglielminettil, L., Lu, Y., Morita, Y., Sato, T., Yamaguchi, T.: Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis. — Plant Cell Physiol. 55: 293–305, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Apel, K., Hirt, H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.CrossRefPubMedGoogle Scholar
  5. Aranjuelo, I., Cabrera-Bosquet, L., Morcuende, R., Avice, J.C., Nogués, S., Araus, J.L., Martínez-Carrasco, R., Pérez, P.: Does ear C sink strength contribute to overcoming photosynthetic acclimation of wheat plants exposed to elevated CO2? — J. exp. Bot. 62: 3957–3969, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aranjuelo, I., Sanz-Sáez, A., Jauregui, I., Irigoyen, J.J., Araus, J.L., Sánchez-Díaz, M., Erice, G.: Harvest index, a parameter conditioning responsiveness of wheat plants to elevated CO2. — J. exp. Bot. 64: 1879–1892, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Backhausen, J.E., Emmerlich, A., Holtgrefe, S., Horton, P., Nast, G., Rogers, J.J., Müller-Röber, B., Scheibe, R.: Transgenic potato plants with altered expression levels of chloroplast NADP-malate dehydrogenase: interactions between photosynthetic electron transport and malate metabolism in leaves and in isolated intact chloroplasts. — Planta 207: 105–114, 1998.CrossRefGoogle Scholar
  8. Bloom, A.J.: Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. — Photosynth. Res. 123: 117–128, 2015.CrossRefPubMedGoogle Scholar
  9. Bloom A.J., Burger, M., Rubio Asensio, J.S., Cousins, A.B.: Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. — Science 328: 899–903, 2010.CrossRefPubMedGoogle Scholar
  10. Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., Ishizaki, K., Leaver, C.J.: Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. — Plant J. 42: 567–585, 2005.CrossRefPubMedGoogle Scholar
  11. Buchner, P., Tausz, M., Ford, R., Leo, A., Fitzgerald, G.J., Hawkesford, M.J., Tausz-Posch, S.: Expression patterns of C- and N-metabolism related genes in wheat are changed during senescence under elevated CO2 in dry-land agriculture. — Plant Sci. 236: 239–249, 2015.CrossRefPubMedGoogle Scholar
  12. Cabello, P., Agüera, E., De La Haba, P.: Metabolic changes during natural ageing in sunflower (Helianthus annuus) leaves: expression and activity of glutamine synthetase isoforms are regulated differently during senescence. — Physiol. Plant. 128: 175–185, 2006.CrossRefGoogle Scholar
  13. Canales, F.J., De la Haba, P., Barrientos E., Agüera, E.: Effect of CO2 enrichment and increased nitrogen supply on the induction of sunflower (Helianthus annuus L.) primary leaf senescence. — Can. J. Plant Sci. 96: 1002–1013, 2016.Google Scholar
  14. Cantamutto, M., Poverene, M.: Genetically modified sunflower release: opportunities and risks. — Field Crops Res. 101: 133–144, 2007.CrossRefGoogle Scholar
  15. Carlisle, E., Myers, S., Raboy, V. Bloom, A.: The effects of inorganic nitrogen form and CO2 concentration on wheat yield and nutrient accumulation and distribution. — Front. Plant Sci. 3: 195, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Carrión, C.A., Costa, M.L., Martínez, D.E., Mohr, C., Humbeck, K., Guiamet, J.J.: In vivo inhibition of cysteine proteases provides evidence for the involvement of ‘senescence-associated vacuoles’ in chloroplast protein degradation during dark-induced senescence of tobacco leaves. — J. exp. Bot. 64: 4967–4980, 2013.CrossRefPubMedGoogle Scholar
  17. Chen, D., Wang, S., Xiong, B., Cao, B., Deng X.: Carbon/ nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. — PloS ONE 10: 8, 2015.Google Scholar
  18. Christiansen, M.V., Matthewman, C., Podzimska-Sroka, D., O’Shea, C., Lindemose, S., Møllegaard, N.E., Holme, I.B., Hebelstrup, K., Skriver, K., Gregersen, P.L.: Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. — J. exp. Bot. 67: 5259–5273, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  19. De la Mata, L., Cabello, P., De la Haba, P., Agüera, E.: Growth under elevated atmospheric CO2 concentration accelerates leaf senescence in sunflower (Helianthus annuus L.) plants. — J. Plant Physiol. 109: 1392–1400, 2012.CrossRefGoogle Scholar
  20. De la Mata, L., De la Haba, P., Alamillo, J. M., Pineda, M., Agüera, E.: Elevated CO2 concentrations alter nitrogen metabolism and accelerate senescence in sunflower (Helianthus annuus L.) plants. — Plant Soil Environ. 7: 303–308, 2013.Google Scholar
  21. Del Rio, L.: ROS and RNS in plant physiology: an overview. — J. exp. Bot. 66: 2827–2837, 2015.CrossRefPubMedGoogle Scholar
  22. Diaz, C., Purdy, S., Christ, A., Morot-Gaudry, J.F., Wingler, A., Masclaux-Daubresse, C.: Characterization of markers to determine the extent and variability of leaf senescence in Arabidopsis. A metabolic profiling approach. — Plant Physiol. 138: 898–908, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Easlon, H.M., Carlisle, E., Mckay J.K., Bloom, A.J.: Does Low stomatal conductance or photosynthetic capacity enhance growth at elevated CO2 in Arabidopsis. — Plant Physiol. 167: 793–799, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Ferris, R., Sabatti, M., Miglietta, F., Mills, R., Taylor, G.: Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell expansion and production. — Plant Cell Environ. 24: 305–315, 2001.CrossRefGoogle Scholar
  25. Geissler, N., Hussin, S., Koyro, H.W.: Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L. — J. exp. Bot. 60: 137–151, 2009.CrossRefPubMedGoogle Scholar
  26. Gillespie, K.M., Rogers, A., Ainsworth, E.A.: Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). — J. exp. Bot. 62: 2667–2678, 2011.CrossRefPubMedGoogle Scholar
  27. Girondé, A., Etienne, P., Trouverie, J., Bouchereau, A., Le Cahérec, F., Leport, L., Orsel, M., Niogret, M.F., Nesi, N., Carole, D., Soulay, F., Masclaux-Daubresse, C., Avice, J.C.: The contrasting N management of two oilseed rape genotypes reveals the mechanisms of proteolysis associated with leaf N remobilization and the respective contributions of leaves and stems to N storage and remobilization during seed filling. — BMC Plant Biol. 15: 59, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gruissem, W., Lee, C., Oliver, M., Pogson, B.: The global plant council: increasing the impact of plant research to meet global challenges. — J Plant Biol. 55: 343–345, 2012.CrossRefGoogle Scholar
  29. Guo, Y., Cai, Z., Gan, S.: Transcriptome of Arabidopsis leaf senescence. — Plant Cell Environ. 27: 521–549, 2004.CrossRefGoogle Scholar
  30. Gutiérrez, D., Morcuende, R., Del Pozo, A., Martínez-Carrasco, R., Pérez, P.: Involvement of nitrogen and cytokinins in photosynthetic acclimation to elevated CO2 of spring wheat. — J. Plant Physiol. 170: 1337–1343, 2013.CrossRefPubMedGoogle Scholar
  31. Havé, M., Leitao, L., Bagard, M., Castell, J.F., Repellin, A.: Plant protein carbonylation during natural leaf senescence in winter wheat as probed by fluorescein-5-thiosemicarbazide. — Plant Biol. 17: 973–979, 2015.CrossRefPubMedGoogle Scholar
  32. Havé, M., Marmagne, A., Chardon, F., Masclaux-Daubresse, C.: Nitrogen remobilization during leaf senescence: lessons from Arabidopsis crops. — J. exp. Bot. 68: 2513–2529, 2017.PubMedGoogle Scholar
  33. Haworth, M., Killi, D., Materassi, A., Raschi A., Centritto, M.: Impaired stomatal control is associated with reduced photosynthetic physiology in crop species grown at elevated [CO2]. — Front. Plant Sci. 7: 1568, 2016.PubMedPubMedCentralGoogle Scholar
  34. Hendry, G.A.F., Houghton, J.D. Brown, S.B.: The degradation of chlorophyll–a biological enigma. — New Phytol. 107: 255–302, 1987.CrossRefGoogle Scholar
  35. Himelblau, E., Amasino, R.M.: Nutrients mobilized from leaves of Arabidopsis thaliana during senescence. — J. Plant Physiol. 158: 1317–1323, 2001.CrossRefGoogle Scholar
  36. Igamberdiev, A.U., Bykova, N.V., Lea, P.J., Gardeström, P.: The role of photorespiration in redox and energy balance of photosynthetic plant cells: a study with a barley mutant deficient in glycine decarboxylase. — Physiol. Plant. 111: 427–438, 2001.CrossRefPubMedGoogle Scholar
  37. Kontunen-Soppela, S., Parviainen, J., Ruhanen, H., Brosche, M., Keinänen, M., Thakur, R.C., Kolehmainen, M., Kangasjärvi, J., Oksanen, E., Karnosky, D.F.: Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence. — Environ. Pollut. 158: 959–968, 2010.CrossRefPubMedGoogle Scholar
  38. Kurepa, J., Smalle, J.A.: Structure function and regulation of plant proteasomes. — Biochimie 90: 324–335, 2008.CrossRefPubMedGoogle Scholar
  39. Lee, R., Chen, S.G.: Programmed cell death during rice leaf senescence is nonapoptotic. — New Phytol. 155: 25–32, 2002.CrossRefGoogle Scholar
  40. Liang, C., Wang, Y., Zhu, Y., Tang, J., Hu, B., Liu, L., Ou, S., Wu, H., Sun, X., Chu, J., Chu, C.: OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. — Proc. nat. Acad. Sci. USA 111: 10013–10018, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lim, P.O., Kim, H.J., Gil Nam, H.: Leaf senescence. — Annu. Rev. Plant Biol. 58: 115–136, 2007.CrossRefPubMedGoogle Scholar
  42. Liu, Y., Wang, L., Liu, H., Zhao, R., Liu, B., Fu, Q., Zhang, Y.: The antioxidative defense system is involved in the premature senescence in transgenic tobacco (Nicotiana tabacum NC89). — Biol. Res. 49: 30–45, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lotfiomran, N., Köhl, M., Fromm. J.: Interaction effect between elevated CO2 and fertilization on biomass, gas exchange and C/N ratio of european beech (Fagus sylvatica L.). — Plants 5: 38, 2016.CrossRefPubMedCentralGoogle Scholar
  44. Mariscal, V., Moulin, P., Orsel, M., Miller, A.J., Fernández, E., Galván, A.: Differential regulation of the Chlamydomonas Nar1 gene family by carbon and nitrogen. — Protist.? 157: 421–433, 2006.CrossRefPubMedGoogle Scholar
  45. Martínez, D.E., Costa, M.L., Guiamet, J.J.: Senescenceassociated degradation of chloroplast proteins inside and outside the organelle. — Plant Biol. 10: 15–22, 2008.CrossRefPubMedGoogle Scholar
  46. Marschner, H.: Mineral Nutrition of Higher Plants. 3rd Edition. — Academic Press, London 2012.Google Scholar
  47. Masclaux C, Valadier M.H, Brugière N, Morot-Gaudry J.F, Hirel B.: Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. — Planta 211: 510–518, 2000.CrossRefPubMedGoogle Scholar
  48. McNally, S., Hirel, B.: Glutamine synthetase isoforms in higher plants. — Physiol. vég. 21: 761–774, 1983.Google Scholar
  49. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.CrossRefPubMedGoogle Scholar
  50. Noguchi, K., Watanabe, C.K., Terashima, I.: Effects of elevated atmospheric CO2 on primary metabolite levels in Arabidopsis thaliana Col-0 leaves: an examination of metabolome data. — Plant Cell Physiol. 56: 2069–2078, 2015.PubMedGoogle Scholar
  51. Ougham, H., Hörtensteiner, S., Armstead, I., Donnison, I., King, I., Thomas, H., Mur. L.: The control of chlorophyll catabolism and the status of yellowing as a biomarker of leaf senescence. — Plant Biol. 10: 4–14, 2008.CrossRefPubMedGoogle Scholar
  52. Palenchar, PM., Kouranov, A., Lejay, L.V., Coruzzi, G.M.: Genome-wide patterns of carbon and nitrogen regulation of gene expression validate the combined carbon and nitrogen (CN)-signaling hypothesis in plants. — Genom. Biol. 5: R91, 2004.CrossRefGoogle Scholar
  53. Pérez, P., Morcuende, R., Martín del Molino, I.M., Martínez-Carrasco, R.: Diurnal changes of Rubisco in response to elevated CO2, temperature and nitrogen in wheat grown under temperature gradient tunnels. — Environ. exp. Bot. 53: 13–27, 2005.CrossRefGoogle Scholar
  54. Procházková, D., Wilhelmová, N.: Leaf senescence and activities of the antioxidant enzymes. — Biol. Plant. 51: 401–406, 2007.CrossRefGoogle Scholar
  55. Quesada, A, Gómez-García, I, Fernández, E.: Involvement of chloroplast and mitochondria redox valves in nitrate assimilation. — Trends Plant Sci. 5: 463–464, 2000.CrossRefPubMedGoogle Scholar
  56. Qiu, Q.S., Huber, J.L., Booker, F.L., Jain, V., Leakey, A.D.B., Fiscus, E.L., Yau, P.M., Ort, D.R., Huber, S.C.: Increased protein carbonylation in leaves of Arabidopsis and soybean in response to elevated [CO2]. — Photosynth. Res. 97: 155–166, 2008.CrossRefPubMedGoogle Scholar
  57. Quirino, B.F., Noh, Y.S., Himelblau, E., Amasino, R.M.: Molecular aspects of leaf senescence. — Trends Plant Sci. 5: 278–282, 2000.CrossRefPubMedGoogle Scholar
  58. Riikonen, J., Percy, K.E., Kivimäenpää, M., Kubiske, M.E., Nelson, N.D., Vapaavuori, E., Karnosky, D.F. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3. — Environ. Pollut. 158: 1029–1035, 2010.CrossRefPubMedGoogle Scholar
  59. Robinson, W.D., Carson, I., Ying, S., Ellis, K., Plaxton, W.C.: Eliminating the purple acid phosphatase AtPAP26 in Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization. — New Phytol. 196: 1024–1029, 2012.CrossRefPubMedGoogle Scholar
  60. Rosenwasser, S., Rot, I., Sollner, E., Meyer, A.J., Smith, Y., Leviatan, N., Fluhr, R., Friedman, H.: Organelles contribute differentially to reactive oxygen species-related events during extended darkness. — Plant Physiol. 156: 185–201, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schippers, J.H.M., Schmidt, R., Wagstaff, C., Jing, H.C.: Living to die and dying to live: the survival strategy behind leaf senescence. — Plant Physiol. 169: 914–930, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Sharma, P., Jha, A.B., Dubey, R.S., Pessarakli, M.: Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. — J. Bot. 1: 26, 2012.Google Scholar
  63. Srivalli, B., Khanna-Chopra, R.: The developing reproductive ‘sink’ induces oxidative stress to mediate nitrogen mobilization during monocarpic senescence in wheat. — Biochem. biophys. Res. Commun. 325: 198–202, 2004.CrossRefPubMedGoogle Scholar
  64. Srivalli, B., Khanna-Chopra, R.: Delayed wheat flag leaf senescence due to removal of spikelets is associated with increased activities of leaf antioxidant enzymes, reduced glutathione/oxidized glutathione ratio and oxidative damage to mitochondrial proteins. — Plant Physiol. Biochem. 47: 663–670, 2009.CrossRefPubMedGoogle Scholar
  65. Stitt, M., Krapp, A.: The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. — Plant Cell and Environ. 22: 583–621, 1999.CrossRefGoogle Scholar
  66. Taylor, K.E., MacCracken, M.C.: Projected effects of increasing concentrations of carbon dioxide and trace gases on climate. — In: Kimball, B.A, (ed): Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture. Pp. 1–17. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison 1990.Google Scholar
  67. Thomas, H.: Senescence, ageing and death of the whole plant. — New Phytol. 197: 696–711, 2013.CrossRefPubMedGoogle Scholar
  68. Thomas, H., Ougham, H.: The stay-green trait. — J. exp. Bot 65: 3889–3900, 2014.CrossRefPubMedGoogle Scholar
  69. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., Dubcovsky, J.: A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. — Science 314: 1298–1301, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Uzelac, B., Janoševic, D., Simonovic, A., Motyka, V., Dobrev, P.I., Budimir, S.: Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro. — Protoplasma. 253: 259–275, 2016.CrossRefPubMedGoogle Scholar
  71. Vanacker, H., Sandalio, L.M., Jiménez, A., Palma, J.M., Corpas, F.J., Meseguer, V., Gomez, M., Sevilla, F., Leterrier, M., Foyer, C.H., Del Rio, L.A.: Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. — J. exp. Bot. 57: 1735–1745, 2006.CrossRefPubMedGoogle Scholar
  72. Vicente, R., Perez, P., Martínez-Carrasco, R., Feil, R., Lunn, J.E. Watanabe, M., Arrivault, S., Stitt, M., Hoefgen, R., Morcuende, R.: Metabolic and transcriptional analysis of durum wheat responses to elevated CO2 at low and high nitrate supply. — Plant Cell Physiol. 57: 133–2146, 2016.CrossRefGoogle Scholar
  73. Wei, S., Wang, X., Shi, D., Li, Y., Zhang, J., Liu, P., Zhao, B., Dong, S.: The mechanisms of low nitrogen induced weakened photosynthesis in summer maize (Zea mays L.) under field conditions. — Plant Physiol. Biochem. 105: 118–128, 2016.CrossRefPubMedGoogle Scholar
  74. Wiedemuth, K., Müller, J., Kahlau, A., Amme, S., Mock, H., Grzam, A., Hell, R., Egle, K., Beschow, H., Humbeck, K.: Successive maturation and senescence of individual leaves during barley whole plant ontogeny reveals temporal and spatial regulation of photosynthetic function in conjunction with C and N metabolism. — J. Plant Physiol. 162: 1226–1236, 2005.CrossRefPubMedGoogle Scholar
  75. Wingler, A., Marès, M., Pourtau, N.: Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. — New Phytol. 161: 781–789, 2004.CrossRefGoogle Scholar
  76. Wingler, A., Maxclaux-Daubresse, C., Fischer A.M.: Sugars, senescence, and ageing in plants and heterotrophic organisms. — J. exp. Bot. 60: 1063–1066, 2009.CrossRefPubMedGoogle Scholar
  77. Wingler, A., Purdy, S., MacLean, J.A., Pourtau N.: The role of sugars in integrating environmental signals during the regulation of leaf senescence. — J. exp. Bot. 57: 391–399, 2006.CrossRefPubMedGoogle Scholar
  78. Wingler, A., Roitsch, T.: Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress response. — Plant Biol. 10: 50–62, 2008.CrossRefPubMedGoogle Scholar
  79. Yang, Z., Ohlrogge, J.B.: Turnover of fatty acids during natural senescence of Arabidopsis, Brachypodium, and switchgrass and in Arabidopsis b-oxidation mutants. — Plant Physiol. 150: 1981–1989, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yousuf, P.Y., Ganie, A.H., Khan, I., Qureshi, M.I., Ibrahim, M., Sarwt, M., Iqbal, M., Ahmad, A.: Nitrogen-efficient and nitrogen-inefficient Indian mustard showed differential expression pattern of proteins in response to elevated CO2 and low nitrogen. — Front. Plant Sci. 7: 1–22, 2016.CrossRefGoogle Scholar
  81. Zhao, D., Derkx, A.P., Liu, D.C., Buchner, P., Hawkesford, M.J.: Over-expression of a NAC transcription factor delays leaf senescence and increases grain nitrogen concentration in wheat. — Plant Biol. 17: 904–913, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zulfugarov, I.S., Tovuu, A., Kim, J., Lee, C.: Detection of reactive oxygen species in higher plants. — J. Plant Biol. 54: 351–357, 2011.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  1. 1.Departamento de Botánica, Ecología y Fisiología Vegetal, Facultad de CienciasUniversidad de CórdobaCórdobaSpain

Personalised recommendations