pp 1–10 | Cite as

Purification and characterization of Campylobacter jejuni ferric uptake regulator

  • Sabina Sarvan
  • Allison Yeung
  • François Charih
  • Alain Stintzi
  • Jean-François CoutureEmail author


The ferric uptake regulator (Fur) is a superfamily of transcription factors found in bacteria which control the expression of a myriad of genes. In this study, we report a simple protocol for the purification of recombinant untagged Campylobacter jejuni Fur (CjFur). CjFur was isolated using a combination of three ion exchange chromatography steps followed by size exclusion chromatography on a Superdex 75. ESI–MS analysis shows that our method yields pure CjFur and that this tag-free version incorporates metal more efficiently than recombinant CjFur harboring a tag or tag remnants. Finally, electrophoretic mobility shift assays show that this new purification method yields a CjFur preparation that binds DNA more efficiently. These results suggest that adding a N-terminus tag onto CjFur is detrimental to its activity. Overall, the approaches detailed in this study offer an alternative strategy for the purification of CjFur, and likely other metalloregulators, for future biochemical and biophysical studies.


Purification Ferric uptake regulators Metals 



This project was funded by a grant from the Canadian Institutes of Health Research to Alain Stintzi and Jean-Francois Couture. Dr. Couture acknowledges grants from Canada Foundation for Innovation and a Canada Research Chair in Structural biology and Epigenetics. The authors thank Dr. James Butcher for helpful comments on the manuscript.


  1. An YJ et al (2009) Structural basis for the specialization of Nur, a nickel-specific Fur homolog, in metal sensing and DNA recognition. Nucleic Acids Res 37:3442–3451. CrossRefGoogle Scholar
  2. Batz MB, Hoffmann S, Morris JG Jr (2012) Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J Food Prot 75:1278–1291. CrossRefGoogle Scholar
  3. Butcher J, Sarvan S, Brunzelle JS, Couture J-F, Stintzi A (2012) Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation. Proc Natl Acad Sci USA 109:1–6. CrossRefGoogle Scholar
  4. Butzler JP (2004) Campylobacter, from obscurity to celebrity. Clin Microbiol Infect 10:868–876. CrossRefGoogle Scholar
  5. Chen X et al (2010) Prevalence and antimicrobial resistance of Campylobacter isolates in broilers from China. Vet Microbiol 144:133–139. CrossRefGoogle Scholar
  6. DAK Traoré et al (2006) Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Mol Microbiol 61:1211–1219. CrossRefGoogle Scholar
  7. Dash S, Pai AR, Kamath U, Rao P (2015) Pathophysiology and diagnosis of Guillain-Barre syndrome—challenges and needs. Int J Neurosci 125:235–240. CrossRefGoogle Scholar
  8. Deng X, Sun F, Ji Q, Liang H, Missiakas D, Lan L, He C (2012) Expression of multidrug resistance efflux pump gene norA Is iron responsive in Staphylococcus aureus. J Bacteriol 194:1753–1762. CrossRefGoogle Scholar
  9. Deng Z et al (2015) Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator. Nat Commun 6:7642. CrossRefGoogle Scholar
  10. Dian C et al (2011) The structure of the Helicobacter pylori ferric uptake regulator Fur reveals three functional metal binding sites. Mol Microbiol 79:1260–1275. CrossRefGoogle Scholar
  11. Fillat MF (2014) The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Arch Biochem Biophys 546:41–52. CrossRefGoogle Scholar
  12. Fotsis T, Adlercreutz H, Jarvenpaa P, Setchell KD, Axelson M, Sjovall J (1981) Group separation of steroid conjugates by DEAE-Sephadex anion exchange chromatography. J Steroid Biochem 14:457–463CrossRefGoogle Scholar
  13. Friedman CRN, Neimann J, Wegener HC, Tauxe RV (2000) Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations. Campylobacter, vol II/6, 2nd edn. ASM International, Washington, USA, pp 121–138Google Scholar
  14. Gilston BA et al (2014) Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon. PLoS Biol 12:e1001987. CrossRefGoogle Scholar
  15. Jacquamet L et al (2009) Structural characterization of the active form of PerR: insights into the metal-induced activation of PerR and Fur proteins for DNA binding. Mol Microbiol 73:20–31. CrossRefGoogle Scholar
  16. Kebouchi M et al (2018) Structure and function of the Leptospira interrogans peroxide stress regulator (PerR), an atypical PerR devoid of a structural metal-binding site. J Biol Chem 293:497–509. CrossRefGoogle Scholar
  17. Lavrrar JL, Christoffersen CA, McIntosh MA (2002) Fur–DNA interactions at the bidirectional fepDGC-entS promoter Region in Escherichia coli. J Mol Biol 322:983–995. CrossRefGoogle Scholar
  18. Lee J-W, Helmann JD (2007) Functional specialization within the Fur family of metalloregulators. Biometals 20:485–499. CrossRefGoogle Scholar
  19. Lee MD, Newell DG (2006) Campylobacter in poultry: filling an ecological niche. Avian Dis 50:1–9. CrossRefGoogle Scholar
  20. Lee H-J, Bang SH, Lee K-H, Park S-J (2007) Positive regulation of fur gene expression via direct interaction of Fur in a pathogenic bacterium Vibrio vulnificus. J Bacteriol 189:2629–2636. CrossRefGoogle Scholar
  21. Lin CS et al (2014) Distinct structural features of the peroxide response regulator from group A Streptococcus drive DNA binding. PLoS ONE 9:e89027. CrossRefGoogle Scholar
  22. Lucarelli D, Russo S, Garman E, Milano A, Meyer-Klaucke W, Pohl E (2007) Crystal structure and function of the zinc uptake regulator FurB from Mycobacterium tuberculosis. J Biol Chem 282:9914–9922. CrossRefGoogle Scholar
  23. Moore JE et al (2005) Campylobacter. Vet Res 36:351–382. CrossRefGoogle Scholar
  24. Pecqueur L et al (2006) Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography. J Biol Chem 281:21286–21295. CrossRefGoogle Scholar
  25. Pohl E, Haller JC, Mijovilovich A, Meyer-Klaucke W, Garman E, Vasil ML (2003) Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol Microbiol 47:903–915. CrossRefGoogle Scholar
  26. Richardson DR, Ponka P (1995) Identification of a mechanism of iron uptake by cells which is stimulated by hydroxyl radicals generated via the iron-catalysed Haber-Weiss reaction. Biochem Biophys Acta 1269:105–114CrossRefGoogle Scholar
  27. Sarvan S, Couture JF (2017) Method for the successful crystallization of the ferric uptake regulator from Campylobacter jejuni. Methods Mol Biol 1512:79–89. CrossRefGoogle Scholar
  28. Sarvan S, Charih F, Askoura M, Butcher J, Brunzelle JS, Stintzi A, Couture JF (2018) Functional insights into the interplay between DNA interaction and metal coordination in ferric uptake regulators. Sci Rep 8:7140. CrossRefGoogle Scholar
  29. Sheikh MA, Taylor GL (2009) Crystal structure of the Vibrio cholerae ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol Microbiol 72:1208–1220. CrossRefGoogle Scholar
  30. Shin J-H, Jung HJ, An YJ, Cho Y-B, Cha S-S, Roe J-H (2011) Graded expression of zinc-responsive genes through two regulatory zinc-binding sites in Zur. Proc Natl Acad Sci USA 108:5045–5050. CrossRefGoogle Scholar
  31. Traore DA et al (2006) Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Mol Microbiol 61:1211–1219. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems BiologyUniversity of OttawaOttawaCanada

Personalised recommendations