Advertisement

BioMetals

pp 1–14 | Cite as

Analogues of desferrioxamine B (DFOB) with new properties and new functions generated using precursor-directed biosynthesis

  • Thomas J. Telfer
  • Tomas Richardson-Sanchez
  • Michael P. Gotsbacher
  • Kate P. Nolan
  • William Tieu
  • Rachel CoddEmail author
Article
  • 50 Downloads

Abstract

Desferrioxamine B (DFOB) is a siderophore native to Streptomyces pilosus biosynthesised by the DesABCD enzyme cluster as a high affinity Fe(III) chelator. Although DFOB has a long clinical history for the treatment of chronic iron overload, limitations encourage the development of new analogues. This review describes a recent body of work that has used precursor-directed biosynthesis (PDB) to access new DFOB analogues. PDB exploits the native biosynthetic machinery of a producing organism in culture medium augmented with non-native substrates that compete against native substrates during metabolite assembly. The method allows access to analogues of natural products using benign methods, compared to multistep organic synthesis. The disadvantages of PDB are the production of metabolites in low yield and the need to purify complex mixtures. Streptomyces pilosus medium was supplemented with different types of non-native diamine substrates to compete against native 1,5-diaminopentane to generate DFOB analogues containing alkene bonds, fluorine atoms, ether or thioether functional groups, or a disulfide bond. All analogues retained function as Fe(III) chelators and have properties that could broaden the utility of DFOB. These PDB studies have also added knowledge to the understanding of DFOB biosynthesis.

Keywords

Siderophore Desferrioxamine B Precursor-directed biosynthesis Natural product biosynthesis Iron chelation 

Notes

Acknowledgements

The Australian Research Council (Grant Nos. DP140100092, DP180100785) is acknowledged for research support. The University of Sydney is acknowledged for providing Australian Postgraduate Awards to TJT, TRS and KPN.

References

  1. Abou DS, Ku T, Smith-Jones PM (2011) In vivo biodistribution and accumulation of 89Zr in mice. Nucl Med Biol 38:675–681Google Scholar
  2. Alta ECP, Goswami D, Machini MT, Silvestre DM, Nomura CS, Espósito BP (2014) Desferrioxamine-caffeine (DFCAF) as a cell permeant moderator of the oxidative stress caused by iron overload. Biometals 27:1351–1360Google Scholar
  3. Anderegg G, L’Eplattenier F, Schwarzenbach G (1963) Hydroxamate complexes. II. Application of the pH-method. Helv Chim Acta 46:1400–1408Google Scholar
  4. Barona-Gómez F, Wong U, Giannakopulos AE, Derrick PJ, Challis GL (2004) Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J Am Chem Soc 126:16282–16283Google Scholar
  5. Bentley SD, Chater KF, Cerdeño-Tárraga A-M, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang C-H, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream M-A, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147Google Scholar
  6. Bergeron RJ, Pegram JJ (1988) An efficient total synthesis of desferrioxamine B. J Org Chem 53:3131–3134Google Scholar
  7. Bergeron RJ, McManis JS, Phanstiel OI, Vinson JRT (1995) A versatile synthesis of deferrioxamine B. J Org Chem 60:109–114Google Scholar
  8. Bhatt NB, Pandya DN, Rideout-Danner S, Gage HD, Marini FC, Wadas TJ (2018) A comprehensively revised strategy that improves the specific activity and long-term stability of clinically relevant 89Zr-immuno-PET agents. Dalton Trans 47:13214–13221Google Scholar
  9. Bickel H, Bosshardt R, Gäumann E, Reusser P, Vischer E, Voser W, Wettstein A, Zähner H (1960) Metabolic products of Actinomycetaceae. XXVI. Isolation and properties of ferrioxamines A to F, representing new sideramine compounds. Helv Chim Acta 43:2118–2128Google Scholar
  10. Bickel H, Mertens P, Prelog V, Seibl J, Walser A (1965) Constitution of ferrimycin A1. Antimicrob Agents Chemother 5:951–957Google Scholar
  11. Börjesson PKE, Jauw YWS, Boellaard R, de Bree R, Comans EFI, Roos JC, Castelijns JA, Vosjan MJWD, Kummer JA, Leemans CR, Lammertsma AA, van Dongen GAMS (2006) Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res 12:2133–2140Google Scholar
  12. Börjesson PKE, Jauw YWS, de Bree R, Roos JC, Castelijns JA, Leemans CR, van Dongen GAMS, Boellaard R (2009) Radiation dosimetry of 89Zr-labeled chimeric monoclonal antibody U36 as used for immuno-PET in head and neck cancer patients. J Nucl Med 50:1828–1836Google Scholar
  13. Briand M, Aulsebrook ML, Mindt TL, Gasser G (2017) A solid phase-assisted approach for the facile synthesis of a highly water-soluble zirconium-89 chelator for radiopharmaceutical development. Dalton Trans 46:16387–16389Google Scholar
  14. Brickman TJ, Armstrong SK (2007) Impact of alcaligin siderophore utilization on in vivo growth of Bordetella pertussis. Infect Immun 75:5305–5312Google Scholar
  15. Cao A, Galanello R (2010) Beta-thalassemia. Genet Med 12:61–76Google Scholar
  16. Challis GL (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem 6:601–611Google Scholar
  17. Chang AJ, DeSilva R, Jain S, Lears K, Rogers B, Lapi S (2012) 89Zr-Radiolabeled trastuzumab imaging in orthotopic and metastatic breast tumors. Pharmaceuticals 5:79–93Google Scholar
  18. Codd R (2008) Traversing the coordination chemistry and chemical biology of hydroxamic acids. Coord Chem Rev 252:1387–1408Google Scholar
  19. Codd R, Richardson-Sanchez T, Telfer TJ, Gotsbacher MP (2018) Advances in the chemical biology of desferrioxamine B. ACS Chem Biol 13:11–25Google Scholar
  20. Crumbliss AL, Harrington JM (2009) Iron sequestration by small molecules: thermodynamic and kinetic studies of natural siderophores and synthetic model complexes. Adv Inorg Chem 61:179–250Google Scholar
  21. Deri MA, Zeglis BM, Francesconi LC, Lewis JS (2013) PET imaging with 89Zr: from radiochemistry to the clinic. Nucl Med Biol 40:3–14Google Scholar
  22. Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PJ, de Jong JR, van Dongen GA, Schroeder CP, Lub-de Hooge MN, de Vries EG (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87:586–592Google Scholar
  23. Ejje N, Soe CZ, Gu J, Codd R (2013) The variable hydroxamic acid siderophore metabolome of the marine actinomycete Salinispora tropica CNB-440. Metallomics 5:1519–1528Google Scholar
  24. Evans MJ, Holland JP, Rice SL, Doran MG, Cheal SM, Campos C, Carlin SD, Mellinghoff IK, Sawyers CL, Lewis JS (2013) Imaging tumor burden in the brain with 89Zr-transferrin. J Nucl Med 54:90–95Google Scholar
  25. Evers A, Hancock RD, Martell AE, Motekaitis RJ (1989) Metal ion recognition in ligands with negatively charged oxygen donor groups. Complexation of Fe(III), Ga(III), In(III), Al(III), and other highly charged metal ions. Inorg Chem 28:2189–2195Google Scholar
  26. Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015) Applications of fluorine in medicinal chemistry. J Med Chem 58:8315–8359Google Scholar
  27. Gotsbacher MP, Telfer TJ, Witting PK, Double KL, Finkelstein DI, Codd R (2017) Analogues of desferrioxamine B designed to attenuate iron-mediated neurodegeneration: synthesis, characterisation and activity in the MPTP-mouse model of Parkinson’s disease. Metallomics 9:852–864Google Scholar
  28. Guérard F, Lee Y-S, Tripier R, Szajek LP, Deschamps JR, Brechbiel MW (2013) Investigation of Zr(IV) and 89Zr(IV) complexation with hydroxamates: progress towards designing a better chelator than desferrioxamine B for immuno-PET imaging. Chem Commun 49:1002–1004Google Scholar
  29. Hallaway PE, Eaton JW, Panter SS, Hedlund BE (1989) Modulation of deferoxamine toxicity and clearance by covalent attachment to biocompatible polymers. Proc Natl Acad Sci USA 86:10108–10112Google Scholar
  30. Hamilton JL, Imran ul-haq M, Abbina S, Kalathottukaren MT, Lai BFL, Hatef A, Unniappan S, Kizhakkedathu JN (2016) In vivo efficacy, toxicity and biodistribution of ultra-long circulating desferrioxamine based polymeric iron chelator. Biomaterials 102:58–71Google Scholar
  31. Holland JP, Vasdev N (2014) Charting the mechanism and reactivity of zirconium oxalate with hydroxamate ligands using density functional theory: implications in new chelate design. Dalton Trans 43:9872–9884Google Scholar
  32. Holland JP, Caldas-Lopes E, Divilov V, Longo VA, Taldone T, Zatorska D, Chiosis G, Lewis JS (2010a) Measuring the pharmacodynamic effects of a novel Hsp90 inhibitor on HER2/neu expression in mice using 89Zr-DFO-trastuzumab. PLoS ONE 5:e8859Google Scholar
  33. Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS (2010b) 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med 51:1293–1300Google Scholar
  34. Holland JP, Evans MJ, Rice SL, Wongvipat J, Sawyers CL, Lewis JS (2012) Annotating MYC status with 89Zr-transferrin imaging. Nat Med 18:1586–1591Google Scholar
  35. Hunter L (2010) The C-F bond as a conformational tool in organic and biological chemistry. Beilstein J Org Chem 1:1–10.  https://doi.org/10.3762/bjoc.3766.3738 Google Scholar
  36. Ihnat PM, Vennerstrom JL, Robinson DH (2000) Synthesis and solution properties of deferoxamine amides. J Pharmaceut Sci 89:1525–1536Google Scholar
  37. Ji C, Miller MJ (2012) Chemical syntheses and in vitro antibacterial activity of two desferrioxamine B-ciprofloxacin conjugates with potential esterase and phosphatase triggered drug release linkers. Bioorg Med Chem 20:3828–3836Google Scholar
  38. Johnstone TC, Nolan EM (2015) Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 44:6320–6339Google Scholar
  39. Kadi N, Oves-Costales D, Barona-Gómez F, Challis GL (2007) A new family of ATP-dependent oligomerization-macrocyclization biocatalysts. Nat Chem Biol 3:652–656Google Scholar
  40. Kang HY, Brickman TJ, Beaumont FC, Armstrong SK (1996) Identification and characterization of iron-regulated Bordetella pertussis alcaligin biosynthesis genes. J Bacteriol 178:4877–4884Google Scholar
  41. Keliher EJ, Yoo J, Nahrendorf M, Lewis JS, Marinelli B, Newton A, Pittet MJ, Weissleder R (2011) 89Zr-Labeled dextran nanoparticles allow in vivo macrophage imaging. Bioconjugate Chem 22:2383–2389Google Scholar
  42. Klahn P, Brönstrup M (2017) Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 34:832–885Google Scholar
  43. Li J, Wang C, Zhang Z-M, Cheng Y-Q, Zhou J (2014) The structural basis of an NADP+-independent dithiol oxidase in FK228 biosynthesis. Sci Rep 4:4145Google Scholar
  44. Li B, Lowe-Power T, Kurihara S, Gonzales S, Naidoo J, MacMillan JB, Allen C, Michael AJ (2016) Functional identification of putrescine C- and N-hydroxylases. ACS Chem Biol 11:2782–2789Google Scholar
  45. Liddell JR, Obando D, Liu J, Ganio G, Volitakis I, Mok SS, Crouch PJ, White AR, Codd R (2013) Lipophilic adamantyl- or deferasirox-based conjugates of desferrioxamine B have enhanced neuroprotective capacity: implications for Parkinson disease. Free Radic Biol Med 60:147–156Google Scholar
  46. Liu J, Obando D, Schipanski LG, Groebler LK, Witting PK, Kalinowski DS, Richardson DR, Codd R (2010) Conjugates of desferrioxamine B (DFOB) with derivatives of adamantane or with orally available chelators as potential agents for treating iron overload. J Med Chem 53:1370–1382Google Scholar
  47. Lloyd JB, Cable H, Rice-Evans C (1991) Evidence that desferrioxamine cannot enter cells by passive diffusion. Biochem Pharmacol 41:1361–1363Google Scholar
  48. Marmion CJ, Griffith D, Nolan KB (2004) Hydroxamic acids. An intriguing family of enzyme inhibitors and biomedical ligands. Eur J Inorg Chem 15:3003–3016Google Scholar
  49. Meijs WE, Herscheid JDM, Haisma HJ, Pinedo HM (1992) Evaluation of desferal as a bifunctional chelating agent for labeling antibodies with Zr-89. Appl Radiat Isot 43:1443–1447Google Scholar
  50. Meiwes J, Fiedler H-P, Zähner H, Konetschny-Rapp S, Jung G (1990) Production of desferrioxamine E and new analogues by directed fermentation and feeding fermentation. Appl Microbiol Biotechnol 32:505–510Google Scholar
  51. Miethke M (2013) Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems. Metallomics 5:15–28Google Scholar
  52. Neilands JB, Valenta JR (1985) Iron-containing antibiotics. In: Sigel H (ed) Metal ions in biological systems, vol 19. Marcel Dekker, New York, pp 313–333Google Scholar
  53. Neumann W, Nolan EM (2018) Evaluation of a reducible disulfide linker for siderophore-mediated delivery of antibiotics. J Biol Inorg Chem 23:1025–1036Google Scholar
  54. Neumann W, Sassone-Corsi M, Raffatellu M, Nolan EM (2018) Esterase-catalyzed siderophore hydrolysis activates an enterobactin-ciprofloxacin conjugate and confers targeted antibacterial activity. J Am Chem Soc 140:5193–5201Google Scholar
  55. Olivieri NF, Brittenham GM (1997) Iron-chelating therapy and the treatment of thalassemia. Blood 89:739–761Google Scholar
  56. Patra M, Bauman A, Mari C, Fischer CA, Blacque O, Haussinger D, Gasser G, Mindt TL (2014) An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes. Chem Commun 50:11523–11525Google Scholar
  57. Perk LR, Visser GWM, Vosjan MJWD, Stigter-van Walsum M, Tijink BM, Leemans CR, van Dongen GAMS (2005) 89Zr as a PET surrogate radioisotope for scouting biodistribution of the therapeutic radiometals 90Y and 177Lu in tumor-bearing nude mice after coupling to the internalizing antibody cetuximab. J Nucl Med 46:1898–1906Google Scholar
  58. Perk LR, Visser OJ, Stigter-van Walsum M, Vosjan MJ, Visser GW, Zijlstra JM, Huijgens PC, van Dongen GA (2006) Preparation and evaluation of 89Zr-Zevalin for monitoring of 90Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 33:1337–1345Google Scholar
  59. Peter HH (1985) Industrial aspects of iron chelators: pharmaceutical applications. In: Spik G, Montreuil J, Crichton RR, Mazurier J (eds) Proteins of iron storage and transport. Elsevier, Amsterdam, pp 293–303Google Scholar
  60. Poreddy AR, Schall OF, Osiek TA, Wheatley JR, Beusen DD, Marshall GR, Slomczynska U (2004) Hydroxamate-based iron chelators: combinatorial syntheses of desferrioxamine B analogues and evaluation of binding affinities. J Comb Chem 6:239–254Google Scholar
  61. Price TW, Greenman J, Stasiuk GJ (2016) Current advances in ligand design for inorganic positron emission tomography tracers 68Ga, 64Cu, 89Zr and 44Sc. Dalton Trans 45:15702–15724Google Scholar
  62. Richardson-Sanchez T, Codd R (2018) Engineering a cleavable disulfide bond into a natural product siderophore using precursor-directed biosynthesis. Chem Commun 54:9813–9816Google Scholar
  63. Richardson-Sanchez T, Tieu W, Gotsbacher MP, Telfer TJ, Codd R (2017) Exploiting the biosynthetic machinery of Streptomyces pilosus to engineer a water-soluble zirconium(IV) chelator. Org Biomol Chem 15:5719–5730Google Scholar
  64. Richardson-Sanchez T, Nolan KP, Codd R (2018) Rubik’s cube of siderophore assembly established from mixed-substrate precursor-directed biosynthesis. ACS Omega 3:18160–18169Google Scholar
  65. Rizvi SNF, Visser OJ, Vosjan MJD, Lingen A, Hoekstra OS, Zijlstra JM, Huijgens PC, Dongen GAMS, Lubberink M (2012) Biodistribution, radiation dosimetry and scouting of 90Y-ibritumomab tiuxetan therapy in patients with relapsed B-cell non-Hodgkin’s lymphoma using 89Zr-ibritumomab tiuxetan and PET. Eur J Nucl Med Mol Imaging 39:512–520Google Scholar
  66. Roosenberg JMI, Lin Y-M, Lu Y, Miller MJ (2000) Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem 7:159–197Google Scholar
  67. Rund D, Rachmilewitz E (2005) Medical progress: β-Thalassemia. N Engl J Med 353:1135–1146Google Scholar
  68. Rütschlin S, Böttcher T (2018) Dissecting the mechanism of oligomerization and macrocyclization reactions of NRPS-independent siderophore synthetases. Chem Eur J 24:16044–16051Google Scholar
  69. Sattler I, Grabley S, Thiericke R (1999) Structure modification via biological derivitization methods. In: Grabley S, Thiericke R (eds) Drug discovery from nature. Springer, Berlin, pp 191–214Google Scholar
  70. Schupp T, Waldmeier U, Divers M (1987) Biosynthesis of desferrioxamine B in Streptomyces pilosus: evidence for the involvement of lysine decarboxylase. FEMS Microbiol Lett 42:135–139Google Scholar
  71. Schupp T, Toupet C, Divers M (1988) Cloning and expression of two genes of Streptomyces pilosus involved in the biosynthesis of the siderophore desferrioxamine B. Gene 64:179–188Google Scholar
  72. Telfer TJ, Codd R (2018) Fluorinated analogues of desferrioxamine B from precursor-directed biosynthesis provide new insight into the capacity of DesBCD. ACS Chem Biol 13:2456–2471Google Scholar
  73. Telfer TJ, Gotsbacher MP, Soe CZ, Codd R (2016) Mixing up the pieces of the desferrioxamine B jigsaw defines the biosynthetic sequence catalyzed by DesD. ACS Chem Biol 11:1452–1462Google Scholar
  74. Telfer TJ, Liddell JR, Duncan C, White AR, Codd R (2017) Adamantyl- and other polycyclic cage-based conjugates of desferrioxamine B (DFOB) for treating iron-mediated toxicity in cell models of Parkinson’s disease. Bioorg Med Chem Lett 27:1698–1704Google Scholar
  75. Thiericke R, Rohr J (1993) Biological variation of microbial metabolites by precursor-directed biosynthesis. Nat Prod Rep 10:265–289Google Scholar
  76. Traxler MF, Watrous JD, Alexandrov T, Dorrestein PC, Kolter R (2013) Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. mBio 4:e00459-00413Google Scholar
  77. Ueki M, Suzuki R, Takamatsu S, Takagi H, Uramoto M, Ikeda H, Osada H (2009) Nocardamin production by Streptomyces avermitilis. Actinomycetologica 23:34–39Google Scholar
  78. Vosjan MJWD, Perk LR, Visser GWM, Budde M, Jurek P, Kiefer GE, van Dongen GAMS (2010) Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat Protoc 5:739–743Google Scholar
  79. Vugts DJ, Klaver C, Sewing C, Poot AJ, Adamzek K, Huegli S, Mari C, Visser GWM, Valverde IE, Gasser G, Mindt TL, van Dongen GAMS (2017) Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for 89-Zr-immuno-PET. Eur J Nucl Med Mol Imaging 44:286–295Google Scholar
  80. Waldman AJ, Ng TL, Wang P, Balskus EP (2017) Heteroatom-heteroatom bond formation in natural product biosynthesis. Chem Rev 117:5784–5863Google Scholar
  81. Wencewicz TA, Miller MJ (2017) Sideromycins as pathogen-targeted antibiotics. Top Med Chem 26:151–184Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Medical Sciences (Pharmacology)The University of SydneySydneyAustralia

Personalised recommendations