Advertisement

Biogeochemistry

, Volume 146, Issue 3, pp 209–256 | Cite as

Anhydrosugars as tracers in the Earth system

  • Loredana G. SuciuEmail author
  • Caroline A. Masiello
  • Robert J. Griffin
Synthesis and Emerging Ideas

Abstract

Wild and prescribed fires are important sources of a broad suite of organic compounds collectively termed pyrogenic carbon (PyC). Most PyC compounds have additional sources beyond fire, adding uncertainty to their use as tracers. However, members of the anhydrosugar family of isomeric compounds—levoglucosan, galactosan and mannosan—are generated exclusively by the pyrolysis and combustion of cellulose and hemicellulose. Although anhydrosugars are some of the only unique organic markers for fire, they have not yet seen wide use as tracers in terrestrial or marine research because our understanding of their biogeochemistry and transport through the Earth system is poorly constrained. Anhydrosugars are chemically reactive in all phases (gaseous, aqueous and particulate), molecularly diffusive in semisolid matter, semivolatile, water-soluble, and biodegradable. Their chemical composition also suggests that they sorb to soil mineral surfaces. Together, these characteristics mean that anhydrosugars are not conservative tracers. While these traits have historically been perceived as drawbacks, here we argue that these characteristics present opportunities for new research avenues, including tracking organic matter transport and degradation in multiple environments. We review evidence for anhydrosugar production, degradation and detection in various environments, and use this information to propose new research on PyC and organic matter in the Earth system.

Keywords

Anhydrosugars Fire tracers Pyrogenic carbon Carbon cycle Paleoclimate Terrestrial organic matter 

Notes

Acknowledgements

This study was supported partially by the National Science Foundation (NSF) Grant AGS-1552086. We thank the three anonymous reviewers for their constructive criticism that helped us to improve the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abney RB, Berhe AA (2018) Pyrogenic carbon erosion: implications for stock and persistence of pyrogenic carbon in soil. Front Earth Sci.  https://doi.org/10.3389/feart.2018.00026 CrossRefGoogle Scholar
  2. Abney RB, Kuhn TJ, Chow A, Hockaday W, Fogel ML, Berhe AA (2019) Pyrogenic carbon erosion after the rim fire, yosemite national park: the role of burn severity and slope. J Geophys Res 124:432–449.  https://doi.org/10.1029/2018JG004787 CrossRefGoogle Scholar
  3. Ahlrichs R, Ballauff M, Eichkorn K, Hanemann O, Kettenbach G, Klüfers P (1998) Aqueous ethylenediamine dihydroxo palladium (ii): a coordinating agent for low- and high-molecular weight carbohydrates. Chemistry 4:835–844.  https://doi.org/10.1002/(SICI)1521-3765(19980515)4:5%3C835:AID-CHEM835%3E3.0.CO;2-3 CrossRefGoogle Scholar
  4. Akagi SK, Yokelson RJ, Burling IR, Meinardi S, Simpson I, Blake DR, McMeeking GR, Sullivan A, Lee T, Kreidenweis S, Urbanski S, Reardon J, Griffith DWT, Johnson TJ, Weise DR (2013) Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes. Atmos Chem Phys 13:1141–1165.  https://doi.org/10.5194/acp-13-1141-2013 CrossRefGoogle Scholar
  5. Alexis MA, Rasse DP, Knicker H, Anquetil C, Rumpel C (2012) Evolution of soil organic matter after prescribed fire: a 20-year chronosequence. Geoderma 189–190:98–107.  https://doi.org/10.1016/j.geoderma.2012.05.003 CrossRefGoogle Scholar
  6. Amundson R (2001) The Carbon Budget in Soils. Annu Rev Earth Planet Sci 29:535–562.  https://doi.org/10.1146/annurev.earth.29.1.535 CrossRefGoogle Scholar
  7. Andreae MO, Gelencsér A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148.  https://doi.org/10.5194/acp-6-3131-2006 CrossRefGoogle Scholar
  8. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycle 15:955–966.  https://doi.org/10.1029/2000GB001382 CrossRefGoogle Scholar
  9. Arangio AM, Slade JH, Berkemeier T, Pöschl U, Knopf DA, Shiraiwa M (2015) Multiphase chemical kinetics of oh radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion. J Phys Chem A 119:4533–4544.  https://doi.org/10.1021/jp510489z CrossRefGoogle Scholar
  10. Argiriadis E, Battistel D, McWethy DB, Vecchiato M, Kirchgeorg T, Kehrwald NM, Whitlock C, Wilmshurst JM, Barbante C (2018) Lake sediment fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New Zealand. Sci Rep.  https://doi.org/10.1038/s41598-018-30606-3 CrossRefGoogle Scholar
  11. Atanassova I, Doerr SH (2011) Changes in soil organic compound composition associated with heat-induced increases in soil water repellency. Eur J Soil Sci 62:516–532.  https://doi.org/10.1111/j.1365-2389.2011.01350.x CrossRefGoogle Scholar
  12. Bacik J-P, Jarboe LR (2016) Bioconversion of anhydrosugars: emerging concepts and strategies. IUBMB Life 68:700–708.  https://doi.org/10.1002/iub.1533 CrossRefGoogle Scholar
  13. Bai X, Brown RC (2014) Modeling the physiochemistry of levoglucosan during cellulose pyrolysis. J Anal Appl Pyrol 105:363–368.  https://doi.org/10.1016/j.jaap.2013.11.026 CrossRefGoogle Scholar
  14. Bai J, Sun X, Zhang C, Xu Y, Qi C (2013) The OH-initiated atmospheric reaction mechanism and kinetics for levoglucosan emitted in biomass burning. Chemosphere 93:2004–2010.  https://doi.org/10.1016/j.chemosphere.2013.07.021 CrossRefGoogle Scholar
  15. Barbaro E, Kirchgeorg T, Zangrando R, Vecchiato M, Piazza R, Barbante C, Gambaro A (2015) Sugars in Antarctic aerosol. Atmos Environ 118:135–144.  https://doi.org/10.1016/j.atmosenv.2015.07.047 CrossRefGoogle Scholar
  16. Bartels-Rausch T, Jacobi H-W, Kahan TF, Thomas JL, Thomson ES, Abbatt JPD, Ammann M, Blackford JR, Bluhm H, Boxe C, Domine F, Frey MM, Gladich I, Guzmán MI, Heger D, Huthwelker T, Klán P, Kuhs WF, Kuo MH, Maus S, Moussa SG, McNeill VF, Newberg JT, Pettersson JBC, Roeselová M, Sodeau JR (2014) A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmos Chem Phys 14:1587–1633.  https://doi.org/10.5194/acp-14-1587-2014 CrossRefGoogle Scholar
  17. Battistel D, Argiriadis E, Kehrwald N, Spigariol M, Russell JM, Barbante C (2017) Fire and human record at Lake Victoria, East Africa, during the Early Iron Age: did humans or climate cause massive ecosystem changes? Holocene 27:997–1007.  https://doi.org/10.1177/0959683616678466 CrossRefGoogle Scholar
  18. Battistel D, Kehrwald NM, Zennaro P, Pellegrino G, Barbaro E, Zangrando R, Pedeli XX, Varin C, Spolaor A, Vallelonga PT, Gambaro A, Barbante C (2018) High-latitude Southern Hemisphere fire history during the mid- to late Holocene (6000–750 bp). Clim Past 14:871–886.  https://doi.org/10.5194/cp-14-871-2018 CrossRefGoogle Scholar
  19. Belcher CM, Collinson ME, Scott AC (2005) Constraints on the thermal energy released from the Chicxulub impactor: new evidence from multi-method charcoal analysis. J Geol Soc Lond 162:591–602.  https://doi.org/10.1144/0016-764904-104 CrossRefGoogle Scholar
  20. Berhe AA, Harden JW, Torn MS, Kleber M, Burton SD, Harte J (2012) Persistence of soil organic matter in eroding versus depositional landform positions: erosion and soil organic matter dynamics. J Geophys Res.  https://doi.org/10.1029/2011JG001790 CrossRefGoogle Scholar
  21. Berhe AA, Barnes RT, Six J, Marín-Spiotta E (2018) Role of soil erosion in biogeochemical cycling of essential elements: carbon, nitrogen, and phosphorus. Annu Rev Earth Planet Sci 46:521–548.  https://doi.org/10.1146/annurev-earth-082517-010018 CrossRefGoogle Scholar
  22. Bhattarai H, Saikawa E, Wan X, Zhu H, Ram K, Gao S, Kang S, Zhang Q, Zhang Y, Wu G, Wang X, Kawamura K, Fu P, Cong Z (2019) Levoglucosan as a tracer of biomass burning: recent progress and perspectives. Atmos Res 220:20–33.  https://doi.org/10.1016/j.atmosres.2019.01.004 CrossRefGoogle Scholar
  23. Bianchi TS, Galler JJ, Allison MA (2007) Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers. Estuar Coast Shelf Sci 73:211–222.  https://doi.org/10.1016/j.ecss.2007.01.004 CrossRefGoogle Scholar
  24. Bianchi TS, Allison MA, Zhao J, Li X, Comeaux RS, Feagin RA, Kulawardhana RW (2013) Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuar Coast Shelf S 119:7–16.  https://doi.org/10.1016/j.ecss.2012.12.007 CrossRefGoogle Scholar
  25. Bianchi TS, Butman D, Raymond PA, Ward ND, Kates RJS, Flessa KW, Zamora H, Arellano AR, Ramirez J, Rodriguez E (2017) The experimental flow to the Colorado River delta: effects on carbon mobilization in a dry watercourse: experimental of Colorado River. J Geophys Res 122:607–627.  https://doi.org/10.1002/2016JG003555 CrossRefGoogle Scholar
  26. Bird MI, Wynn JG, Saiz G, Wurster CM, McBeath A (2015) The pyrogenic carbon cycle. Annu Rev Earth Planet Sci 43:273–298.  https://doi.org/10.1146/annurev-earth-060614-105038 CrossRefGoogle Scholar
  27. Bretagnon M, Paulmier A, Garçon V, Dewitte B, Illig S, Leblond N, Coppola L, Campos F, Velazco F, Panagiotopoulos C, Oschlies A, Hernandez-Ayon JM, Maske H, Vergara O, Montes I, Martinez P, Carrasco E, Grelet J, Desprez-De-Gesincourt O, Maes C, Scouarnec L (2018) Modulation of the vertical particle transfer efficiency in the oxygen minimum zone off Peru. Biogeosciences 15:5093–5111.  https://doi.org/10.5194/bg-15-5093-2018 CrossRefGoogle Scholar
  28. Brewer CE, Chuang VJ, Masiello CA, Gonnermann H, Gao X, Dugan B, Driver LE, Panzacchi P, Zygourakis K, Davies CA (2014) New approaches to measuring biochar density and porosity. Biomass Bioenergy 66:176–185.  https://doi.org/10.1016/j.biombioe.2014.03.059 CrossRefGoogle Scholar
  29. Bröder L, Tesi T, Andersson A, Semiletov I, Gustafsson Ö (2018) Bounding cross-shelf transport time and degradation in Siberian-Arctic land-ocean carbon transfer. Nat Commun 9:1–8.  https://doi.org/10.1038/s41467-018-03192-1 CrossRefGoogle Scholar
  30. Buettner SW, Kramer MG, Chadwick OA, Thompson A (2014) Mobilization of colloidal carbon during iron reduction in basaltic soils. Geoderma 221–222:139–145.  https://doi.org/10.1016/j.geoderma.2014.01.012 CrossRefGoogle Scholar
  31. Carrico CM, Petters MD, Kreidenweis SM, Sullivan AP, McMeeking GR, Levin EJT, Engling G, Malm WC, Collett JL (2010) Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmos Chem Phys 10:5165–5178.  https://doi.org/10.5194/acp-10-5165-2010 CrossRefGoogle Scholar
  32. Černý M (2003) Chemistry of anhydro sugars. Advances in carbohydrate chemistry and biochemistry. Elsevier, New York, pp 121–198Google Scholar
  33. Chen J, Kawamura K, Liu C-Q, Fu P (2013) Long-term observations of saccharides in remote marine aerosols from the western North Pacific: a comparison between 1990–1993 and 2006–2009 periods. Atmos Environ 67:448–458.  https://doi.org/10.1016/j.atmosenv.2012.11.014 CrossRefGoogle Scholar
  34. Chung SH (2002) Global distribution and climate forcing of carbonaceous aerosols. J Geophys Res.  https://doi.org/10.1029/2001JD001397 CrossRefGoogle Scholar
  35. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. http://www.climatechange2013.org/images/report/WG1AR5_Chapter06_FINAL.pdf. Accessed 28 May 2019
  36. Comba MB, Tsai Y, Sarotti AM, Mangione MI, Suárez AG, Spanevello RA (2018) Levoglucosenone and its new applications: valorization of cellulose residues. Eur J Org Chem 2018:590–604.  https://doi.org/10.1002/ejoc.201701227 CrossRefGoogle Scholar
  37. Coppola AI, Druffel ERM (2016) Cycling of black carbon in the ocean. Geophys Res Lett 43:4477–4482.  https://doi.org/10.1002/2016GL068574 CrossRefGoogle Scholar
  38. Coppola AI, Ziolkowski LA, Masiello CA, Druffel ERM (2014) Aged black carbon in marine sediments and sinking particles. Geophys Res Lett 41:2427–2433.  https://doi.org/10.1002/2013GL059068 CrossRefGoogle Scholar
  39. Czimczik CI, Masiello CA (2007) Controls on black carbon storage in soils. Glob Biogeochem Cycle.  https://doi.org/10.1029/2006GB002798 CrossRefGoogle Scholar
  40. Di Lorenzo RA, Place BK, VandenBoer TC, Young CJ (2018) Composition of size-resolved aged boreal fire aerosols: brown carbon, biomass burning tracers, and reduced nitrogen. ACS Earth Space Chem 2:278–285.  https://doi.org/10.1021/acsearthspacechem.7b00137 CrossRefGoogle Scholar
  41. Dittmar T (2008) The molecular level determination of black carbon in marine dissolved organic matter. Org Geochem 39:396–407.  https://doi.org/10.1016/j.orggeochem.2008.01.015 CrossRefGoogle Scholar
  42. Dittmar T, Koch BP (2006) Thermogenic organic matter dissolved in the abyssal ocean. Mar Chem 102:208–217.  https://doi.org/10.1016/j.marchem.2006.04.003 CrossRefGoogle Scholar
  43. Dittmar T, Paeng J (2009) A heat-induced molecular signature in marine dissolved organic matter. Nat Geosci 2:175–179.  https://doi.org/10.1038/ngeo440 CrossRefGoogle Scholar
  44. Dittmar T, de Rezende CE, Manecki M, Niggemann J, Coelho Ovalle AR, Stubbins A, Bernardes MC (2012) Continuous flux of dissolved black carbon from a vanished tropical forest biome. Nat Geosci 5:618–622.  https://doi.org/10.1038/ngeo1541 CrossRefGoogle Scholar
  45. Doerr SH, Shakesby RA, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev 51:33–65.  https://doi.org/10.1016/S0012-8252(00)00011-8 CrossRefGoogle Scholar
  46. Doerr SH, Shakesby RA, Blake WH, Chafer CJ, Humphreys GS, Wallbrink PJ (2006) Effects of differing wildfire severities on soil wettability and implications for hydrological response. J Hydrol 319:295–311.  https://doi.org/10.1016/j.jhydrol.2005.06.038 CrossRefGoogle Scholar
  47. Elias VO, Simoneit BRT, Cordeiro RC, Turcq B (2001) Evaluating levoglucosan as an indicator of biomass burning in Carajás, amazônia: a comparison to the charcoal record. Geochim Cosmochim Acta 65:267–272.  https://doi.org/10.1016/S0016-7037(00)00522-6 CrossRefGoogle Scholar
  48. Fabbri D, Marynowski L, Fabiańska MJ, Zatoń M, Simoneit BRT (2008) Levoglucosan and other cellulose markers in pyrolysates of miocene lignites: geochemical and environmental implications. Environ Sci Technol 42:2957–2963.  https://doi.org/10.1021/es7021472 CrossRefGoogle Scholar
  49. Fabiańska MJ, Kozielska B, Konieczyński J, Kowalski A (2016) Sources of organic pollution in particulate matter and soil of Silesian Agglomeration (Poland): evidence from geochemical markers. Environ Geochem Health 38:821–842.  https://doi.org/10.1007/s10653-015-9764-2 CrossRefGoogle Scholar
  50. Faria SR, De La Rosa JM, Knicker H, González-Pérez JA, Villaverde J, Keizer JJ (2015) Wildfire-induced alterations of topsoil organic matter and their recovery in Mediterranean eucalypt stands detected with biogeochemical markers: forest fire effects on topsoil extractable lipid biomarkers. Eur J Soil Sci 66:699–713.  https://doi.org/10.1111/ejss.12254 CrossRefGoogle Scholar
  51. Feng Y, Ramanathan V, Kotamarthi VR (2013) Brown carbon: a significant atmospheric absorber of solar radiation? Atmos Chem Phys 13:8607–8621.  https://doi.org/10.5194/acp-13-8607-2013 CrossRefGoogle Scholar
  52. Fernández C, Fontúrbel T, Vega JA (2019) Wildfire burned soil organic horizon contribution to runoff and infiltration in a Pinus pinaster forest soil. J For Res 24:86–92.  https://doi.org/10.1080/13416979.2019.1572091 CrossRefGoogle Scholar
  53. Foereid B, Lehmann J, Major J (2011) Modeling black carbon degradation and movement in soil. Plant Soil 345:223–236.  https://doi.org/10.1007/s11104-011-0773-3 CrossRefGoogle Scholar
  54. Fraser MP, Lakshmanan K (2000) Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environ Sci Technol 34:4560–4564.  https://doi.org/10.1021/es991229l CrossRefGoogle Scholar
  55. Fraser MP, Cass GR, Simoneit BRT, Rasmussen RA (1998) Air quality model evaluation data for organics. 5. C6–C22 nonpolar and semipolar aromatic compounds. Environ Sci Technol 32:1760–1770.  https://doi.org/10.1021/es970349v CrossRefGoogle Scholar
  56. Fukutome A, Kawamoto H, Saka S (2016) Molecular mechanisms for the gas phase conversion of intermediates during cellulose gasification under nitrogen and oxygen/nitrogen. Chem Ind Chem Eng Q 22:343–353.  https://doi.org/10.2298/CICEQ160325018F CrossRefGoogle Scholar
  57. Fukutome A, Kawamoto H, Saka S (2017) Kinetics and molecular mechanisms for the gas phase degradation of levoglucosan as a cellulose gasification intermediate. J Anal Appl Pyrol 124:666–676.  https://doi.org/10.1016/j.jaap.2016.12.010 CrossRefGoogle Scholar
  58. Gack C, Klüfers P (1996) A homoleptic cuprate (ii) complex with deprotonated 1,6-anhydro-β-d-glucose (levoglucosan) ligands. Acta Crystallogr C 52:2972–2975.  https://doi.org/10.1107/S010827019600947X CrossRefGoogle Scholar
  59. Gambaro A, Zangrando R, Gabrielli P, Barbante C, Cescon P (2008) Direct determination of levoglucosan at the picogram per milliliter level in antarctic ice by high-performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry. Anal Chem 80:1649–1655.  https://doi.org/10.1021/ac701655x CrossRefGoogle Scholar
  60. Gao X, Driver LE, Kasin I, Masiello CA, Pyle LA, Dugan B, Ohlson M (2017) Effect of environmental exposure on charcoal density and porosity in a boreal forest. Sci Total Environ 592:316–325.  https://doi.org/10.1016/j.scitotenv.2017.03.073 CrossRefGoogle Scholar
  61. Gensch I, Sang-Arlt XF, Laumer W, Chan CY, Engling G, Rudolph J, Kiendler-Scharr A (2018) Using δ 13 C of levoglucosan as a chemical clock. Environ Sci Technol 52:11094–11101.  https://doi.org/10.1021/acs.est.8b03054 CrossRefGoogle Scholar
  62. Ginot P, Dumont M, Lim S, Patris N, Taupin J-D, Wagnon P, Gilbert A, Arnaud Y, Marinoni A, Bonasoni P, Laj P (2014) A 10 year record of black carbon and dust from a Mera Peak ice core (Nepal): variability and potential impact on melting of Himalayan glaciers. Cryosphere 8:1479–1496.  https://doi.org/10.5194/tc-8-1479-2014 CrossRefGoogle Scholar
  63. Goñi MA, Ruttenberg KC, Eglinton TI (1997) Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 389:275–278.  https://doi.org/10.1038/38477 CrossRefGoogle Scholar
  64. Goñi MA, Ruttenberg KC, Eglinton TI (1998) A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Geochim Cosmochim Acta 62:3055–3075.  https://doi.org/10.1016/S0016-7037(98)00217-8 CrossRefGoogle Scholar
  65. Grannas AM, Bogdal C, Hageman KJ, Halsall C, Harner T, Hung H, Kallenborn R, Klán P, Klánová J, Macdonald RW, Meyer T, Wania F (2013) The role of the global cryosphere in the fate of organic contaminants. Atmos Chem Phys 13:3271–3305.  https://doi.org/10.5194/acp-13-3271-2013 CrossRefGoogle Scholar
  66. Hammes K, Schmidt MWI, Smernik RJ, Currie LA, Ball WP, Nguyen TH, Louchouarn P, Houel S, Gustafsson Ö, Elmquist M, Cornelissen G, Skjemstad JO, Masiello CA, Song J, Peng P, Mitra S, Dunn JC, Hatcher PG, Hockaday WC, Smith DM, Hartkopf-Fröder C, Böhmer A, Lüer B, Huebert BJ, Amelung W, Brodowski S, Huang L, Zhang W, Gschwend PM, Flores-Cervantes DX, Largeau C, Rouzaud J-N, Rumpel C, Guggenberger G, Kaiser K, Rodionov A, Gonzalez-Vila FJ, Gonzalez-Perez JA, de la Rosa JM, Manning DAC, López-Capél E, Ding L (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere: black carbon quantification ring trial. Glob Biogeochem Cycle.  https://doi.org/10.1029/2006GB002914 CrossRefGoogle Scholar
  67. Heckman K, Grandy AS, Gao X, Keiluwei M, Wickings K, Carpenter K, Chorover J, Rasmussen C (2013) Sorptive fractionation of organic matter and formation of organo-hydroxy-aluminum complexes during litter biodegradation in the presence of gibbsite. Geochim Cosmochim Ac 121:667–683.  https://doi.org/10.1016/j.gca.2013.07.043 CrossRefGoogle Scholar
  68. Hedges JI, Keil RG, Benner R (1997) What happens to terrestrial organic matter in the ocean? Org Geochem 27:195–212.  https://doi.org/10.1016/S0146-6380(97)00066-1 CrossRefGoogle Scholar
  69. Hedges JI, Eglinton G, Hatcher P, Kirchman D, Arnosti C, Derenne S, Evershed R, Kögel-Knabner I, de Leeuw J, Littke R, Michaelis W, Rullkötter J (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958.  https://doi.org/10.1016/S0146-6380(00)00096-6 CrossRefGoogle Scholar
  70. Hennigan CJ, Sullivan AP, Collett JL, Robinson AL (2010) Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophys Res Lett.  https://doi.org/10.1029/2010GL043088 CrossRefGoogle Scholar
  71. Hennigan CJ, Miracolo MA, Engelhart GJ, May AA, Presto AA, Lee T, Sullivan AP, McMeeking GR, Coe H, Wold CE, Hao W-M, Gilman JB, Kuster WC, de Gouw J, Schichtel BA, Collett JL, Kreidenweis SM, Robinson AL (2011) Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmos Chem Phys 11:7669–7686.  https://doi.org/10.5194/acp-11-7669-2011 CrossRefGoogle Scholar
  72. Hill KM, Gaffney J, Baumgardner S, Wilcock P, Paola C (2017) Experimental study of the effect of grain sizes in a bimodal mixture on bed slope, bed texture, and the transition to washload. Water Resour Res 53:923–941.  https://doi.org/10.1002/2016WR019172 CrossRefGoogle Scholar
  73. Hobley E (2019) Vertical distribution of soil pyrogenic matter: a review. Pedosphere 29:137–149.  https://doi.org/10.1016/S1002-0160(19)60795-2 CrossRefGoogle Scholar
  74. Hoffer A, Gelencsér A, Blazsó M, Guyon P, Artaxo P, Andreae MO (2006) Diel and seasonal variations in the chemical composition of biomass burning aerosol. Atmos Chem Phys 6:3505–3515.  https://doi.org/10.5194/acp-6-3505-2006 CrossRefGoogle Scholar
  75. Hoffmann D, Tilgner A, Iinuma Y, Herrmann H (2010) Atmospheric stability of levoglucosan: a detailed laboratory and modeling study. Environ Sci Technol 44:694–699.  https://doi.org/10.1021/es902476f CrossRefGoogle Scholar
  76. Holden AS, Sullivan AP, Munchak LA, Kreidenweis SM, Schichtel BA, Malm WC, Collett JL (2011) Determining contributions of biomass burning and other sources to fine particle contemporary carbon in the western United States. Atmos Environ 45:1986–1993.  https://doi.org/10.1016/j.atmosenv.2011.01.021 CrossRefGoogle Scholar
  77. Holmes BJ, Petrucci GA (2007) Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning aerosols. J Atmos Chem 58:151–166.  https://doi.org/10.1007/s10874-007-9084-8 CrossRefGoogle Scholar
  78. Hopmans EC, dos Santos RAL, Mets A, Sinninghe Damsté JS, Schouten S (2013) A novel method for the rapid analysis of levoglucosan in soils and sediments. Org Geochem 58:86–88.  https://doi.org/10.1016/j.orggeochem.2013.02.003 CrossRefGoogle Scholar
  79. Hosoya T, Kawamoto H, Saka S (2006) Thermal stabilization of levoglucosan in aromatic substances. Carbohydr Res 341:2293–2297.  https://doi.org/10.1016/j.carres.2006.06.014 CrossRefGoogle Scholar
  80. Hunsinger GB, Mitra S, Warrick JA, Alexander CR (2008) Oceanic loading of wildfire-derived organic compounds from a small mountainous river. J Geophys Res.  https://doi.org/10.1029/2007JG000476 CrossRefGoogle Scholar
  81. Jacobi H-W, Lim S, Ménégoz M, Ginot P, Laj P, Bonasoni P, Stocchi P, Marinoni A, Arnaud Y (2015) Black carbon in snow in the upper Himalayan Khumbu Valley, Nepal: observations and modeling of the impact on snow albedo, melting, and radiative forcing. Cryosphere 9:1685–1699.  https://doi.org/10.5194/tc-9-1685-2015 CrossRefGoogle Scholar
  82. Jaffe R, Ding Y, Niggemann J, Vahatalo AV, Stubbins A, Spencer RGM, Campbell J, Dittmar T (2013) Global charcoal mobilization from soils via dissolution and riverine transport to the oceans. Science 340:345–347.  https://doi.org/10.1126/science.1231476 CrossRefGoogle Scholar
  83. Janoszka K (2018) Determination of biomass burning tracers in air samples by GC/MS. E3S Web Conf 28:01015.  https://doi.org/10.1051/e3sconf/20182801015 CrossRefGoogle Scholar
  84. Janoszka K, Czaplicka M (2019) Methods for the determination of levoglucosan and other sugar anhydrides as biomass burning tracers in environmental samples: a review. J Sep Sci 42:319–329.  https://doi.org/10.1002/jssc.201800650 CrossRefGoogle Scholar
  85. Jenkin ME, Saunders SM, Pilling MJ (1997) The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atmos Environ 31:81–104.  https://doi.org/10.1016/S1352-2310(96)00105-7 CrossRefGoogle Scholar
  86. Jordan TB, Seen AJ, Jacobsen GE (2006) Levoglucosan as an atmospheric tracer for woodsmoke. Atmos Environ 40:5316–5321.  https://doi.org/10.1016/j.atmosenv.2006.03.023 CrossRefGoogle Scholar
  87. Kabo GJ, Paulechka YU, Voitkevich OV, Blokhin AV, Stepurko EN, Kohut SV, Voznyi YV (2015) Experimental and theoretical study of thermodynamic properties of levoglucosan. J Chem Thermodyn 85:101–110.  https://doi.org/10.1016/j.jct.2015.01.005 CrossRefGoogle Scholar
  88. Kaiser D, Konovalov S, Schulz-Bull DE, Waniek JJ (2017) Organic matter along longitudinal and vertical gradients in the Black Sea. Deep-Sea Res I 129:22–31.  https://doi.org/10.1016/j.dsr.2017.09.006 CrossRefGoogle Scholar
  89. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Organic aerosol and global climate modelling: a review. Atmos Chem Phys 5:1053–1123.  https://doi.org/10.5194/acp-5-1053-2005 CrossRefGoogle Scholar
  90. Kaspari S, Painter TH, Gysel M, Skiles SM, Schwikowski M (2014) Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmos Chem Phys 14:8089–8103.  https://doi.org/10.5194/acp-14-8089-2014 CrossRefGoogle Scholar
  91. Kawamoto H, Murayama M, Saka S (2003) Pyrolysis behavior of levoglucosan as an intermediate in cellulose pyrolysis: polymerization into polysaccharide as a key reaction to carbonized product formation. J Wood Sci 49:469–473.  https://doi.org/10.1007/s10086-002-0487-5 CrossRefGoogle Scholar
  92. Kawamura K, Izawa Y, Mochida M, Shiraiwa T (2012) Ice core records of biomass burning tracers (levoglucosan and dehydroabietic, vanillic and p-hydroxybenzoic acids) and total organic carbon for past 300 years in the Kamchatka Peninsula, Northeast Asia. Geochim Cosmochim Acta 99:317–329.  https://doi.org/10.1016/j.gca.2012.08.006 CrossRefGoogle Scholar
  93. Kehrwald N, Zangrando R, Gabrielli P, Jaffrezo J-L, Boutron C, Barbante C, Gambaro A (2012) Levoglucosan as a specific marker of fire events in Greenland snow. Tellus B.  https://doi.org/10.3402/tellusb.v64i0.18196 CrossRefGoogle Scholar
  94. Kessler SH, Smith JD, Che DL, Worsnop DR, Wilson KR, Kroll JH (2010) Chemical sinks of organic aerosol: kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan. Environ Sci Technol 44:7005–7010.  https://doi.org/10.1021/es101465m CrossRefGoogle Scholar
  95. Kirchgeorg T, Schüpbach S, Kehrwald N, McWethy DB, Barbante C (2014) Method for the determination of specific molecular markers of biomass burning in lake sediments. Org Geochem 71:1–6.  https://doi.org/10.1016/j.orggeochem.2014.02.014 CrossRefGoogle Scholar
  96. Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24.  https://doi.org/10.1007/s10533-007-9103-5 CrossRefGoogle Scholar
  97. Knicker H, Hilscher A, de la Rosa JM, González-Pérez JA, González-Vila FJ (2013) Modification of biomarkers in pyrogenic organic matter during the initial phase of charcoal biodegradation in soils. Geoderma 197–198:43–50.  https://doi.org/10.1016/j.geoderma.2012.12.021 CrossRefGoogle Scholar
  98. Knopf DA, Forrester SM, Slade JH (2011) Heterogeneous oxidation kinetics of organic biomass burning aerosol surrogates by O3, NO2, N2O5, and NO3. Phys Chem Chem Phys 13:21050.  https://doi.org/10.1039/c1cp22478f CrossRefGoogle Scholar
  99. Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82.  https://doi.org/10.1002/jpln.200700048 CrossRefGoogle Scholar
  100. Kramer MG, Chadwick OA (2016) Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii. Ecology 97:2384–2395.  https://doi.org/10.1002/ecy.1467 CrossRefGoogle Scholar
  101. Kudo S, Goto N, Sperry J, Norinaga K, Hayashi J (2017) Production of levoglucosenone and dihydrolevoglucosenone by catalytic reforming of volatiles from cellulose pyrolysis using supported ionic liquid phase. ACS Sustain Chem Eng 5:1132–1140.  https://doi.org/10.1021/acssuschemeng.6b02463 CrossRefGoogle Scholar
  102. Kuo L-J, Herbert BE, Louchouarn P (2008) Can levoglucosan be used to characterize and quantify char/charcoal black carbon in environmental media? Org Geochem 39:1466–1478.  https://doi.org/10.1016/j.orggeochem.2008.04.026 CrossRefGoogle Scholar
  103. Kuo L-J, Louchouarn P, Herbert BE, Brandenberger JM, Wade TL, Crecelius E (2011a) Combustion-derived substances in deep basins of Puget Sound: historical inputs from fossil fuel and biomass combustion. Environ Pollut 159:983–990.  https://doi.org/10.1016/j.envpol.2010.12.012 CrossRefGoogle Scholar
  104. Kuo MH, Moussa SG, McNeil VF (2011b) Modeling interfacial liquid layers on environmental ices. Atmos Chem Phys 11:9971–9982.  https://doi.org/10.5194/acp-11-9971-2011 CrossRefGoogle Scholar
  105. Lai C, Liu Y, Ma J, Ma Q, He H (2014) Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions. Atmos Environ 91:32–39.  https://doi.org/10.1016/j.atmosenv.2014.03.054 CrossRefGoogle Scholar
  106. Lai W, Ogden FL, Steinke RC, Talbot CA (2015) An efficient and guaranteed stable numerical method for continuous modeling of infiltration and redistribution with a shallow dynamic water table. Water Resour Res 51:1514–1528.  https://doi.org/10.1002/2014WR016487 CrossRefGoogle Scholar
  107. Lakshmanan CM, Hoelscher HE (1970) Production of levoglucosan by pyrolysis of carbohydrates. pyrolysis in hot inert gas stream. Ind Eng Chem Prod Res Dev 9:57–59.  https://doi.org/10.1021/i360033a011 CrossRefGoogle Scholar
  108. Lawrence CR, Harden JW, Xu X, Schulz MS, Trumbore SE (2015) Long-term controls on soil organic carbon with depth and time: a case study from the Cowlitz River Chronosequence, WA USA. Geoderma 247–248:73–87.  https://doi.org/10.1016/j.geoderma.2015.02.005 CrossRefGoogle Scholar
  109. Lee T, Sullivan AP, Mack L, Jimenez JL, Kreidenweis SM, Onasch TB, Worsnop DR, Malm W, Wold CE, Hao WM, Collett JL (2010) Chemical smoke marker emissions during flaming and smoldering phases of laboratory open burning of wildland fuels. Aerosol Sci Technol.  https://doi.org/10.1080/02786826.2010.499884 CrossRefGoogle Scholar
  110. Legrand M, Preunkert S, Schock M, Cerqueira M, Kasper-Giebl A, Afonso J, Pio C, Gelencsér A, Dombrowski-Etchevers I (2007) Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores. J Geophys Res.  https://doi.org/10.1029/2006JD008080 CrossRefGoogle Scholar
  111. Legrand M, McConnell J, Fischer H, Wolff EW, Preunkert S, Arienzo M, Chellman N, Leuenberger D, Maselli O, Place P, Sigl M, Schüpbach S, Flannigan M (2016) Boreal fire records in Northern Hemisphere ice cores: a review. Clim Past 12:2033–2059.  https://doi.org/10.5194/cp-12-2033-2016 CrossRefGoogle Scholar
  112. Lian J, Choi J, Tan YS, Howe A, Wen Z, Jarboe LR (2016) Identification of soil microbes capable of utilizing cellobiosan. PLoS ONE 11:e0149336.  https://doi.org/10.1371/journal.pone.0149336 CrossRefGoogle Scholar
  113. Liu Z (2016) Interactions between biochar, soil and water. Dissertation, Rice UniversityGoogle Scholar
  114. Liu D, Yu Y, Wu H (2013) Evolution of water-soluble and water-insoluble portions in the solid products from fast pyrolysis of amorphous cellulose. Ind Eng Chem Res 52:12785–12793.  https://doi.org/10.1021/ie401806y CrossRefGoogle Scholar
  115. Liu Z, Dugan B, Masiello CA, Wahab LM, Gonnermann HM, Nittrouer JA (2018) Effect of freeze-thaw cycling on grain size of biochar. PLoS ONE 13:e0191246.  https://doi.org/10.1371/journal.pone.0191246 CrossRefGoogle Scholar
  116. Lopes dos Santos RA, De Deckker P, Hopmans EC, Magee JW, Mets A, Sinninghe Damsté JS, Schouten S (2013) Abrupt vegetation change after the Late Quaternary megafaunal extinction in southeastern Australia. Nat Geosci 6:627–631.  https://doi.org/10.1038/ngeo1856 CrossRefGoogle Scholar
  117. Louchouarn P, Kuo L-J, Wade TL, Schantz M (2009) Determination of levoglucosan and its isomers in size fractions of aerosol standard reference materials. Atmos Environ 43:5630–5636.  https://doi.org/10.1016/j.atmosenv.2009.07.040 CrossRefGoogle Scholar
  118. Lutfalla S, Abiven S, Barré P, Wiedemeier DB, Christensen BT, Houot S, Kätterer T, Macdonald AJ, van Oort F, Chenu C (2017) Pyrogenic carbon lacks long-term persistence in temperate arable soils. Front Earth Sci.  https://doi.org/10.3389/feart.2017.00096 CrossRefGoogle Scholar
  119. Lutzow MV, Kogel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review. Eur J Soil Sci 57:426–445.  https://doi.org/10.1111/j.1365-2389.2006.00809.x CrossRefGoogle Scholar
  120. Mai-Gisondi G, Maaheimo H, Chong S-L, Hinz S, Tenkanen M, Master E (2017) Functional comparison of versatile carbohydrate esterases from families CE1, CE6 and CE16 on acetyl-4-O-methylglucuronoxylan and acetyl-galactoglucomannan. BBA Gen Subj 1861:2398–2405.  https://doi.org/10.1016/j.bbagen.2017.06.002 CrossRefGoogle Scholar
  121. Mai-Thi N-N, St-Onge G, Tremblay L (2017) Contrasting fates of organic matter in locations having different organic matter inputs and bottom water O2 concentrations. Estuar Coast Shelf Sci 198:63–72.  https://doi.org/10.1016/j.ecss.2017.08.044 CrossRefGoogle Scholar
  122. Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Chang Biol 16:1366–1379.  https://doi.org/10.1111/j.1365-2486.2009.02044.x CrossRefGoogle Scholar
  123. Makar AB, McMartin KE, Palese M, Tephly TR (1975) Formate assay in body fluids: application in methanol poisoning. Biochem Med 13:117–126.  https://doi.org/10.1016/0006-2944(75)90147-7 CrossRefGoogle Scholar
  124. Marynowski L, Filipiak P (2007) Water column euxinia and wildfire evidence during deposition of the Upper Famennian Hangenberg event horizon from the Holy Cross Mountains (central Poland). Geol Mag 144:569.  https://doi.org/10.1017/S0016756807003317 CrossRefGoogle Scholar
  125. Marynowski L, Bucha M, Smolarek J, Wendorff M, Simoneit BRT (2018) Occurrence and significance of mono-, di- and anhydrosaccharide biomolecules in Mesozoic and Cenozoic lignites and fossil wood. Org Geochem 116:13–22.  https://doi.org/10.1016/j.orggeochem.2017.11.008 CrossRefGoogle Scholar
  126. Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92:201–213.  https://doi.org/10.1016/j.marchem.2004.06.043 CrossRefGoogle Scholar
  127. Masiello CA, Druffel ERM (1998) Black carbon in deep-sea sediments. Science 280:1911–1913.  https://doi.org/10.1126/science.280.5371.1911 CrossRefGoogle Scholar
  128. Masiello CA, Druffel ERM (2003) Organic and black carbon 13 C and 14 C through the Santa Monica Basin sediment oxic-anoxic transition. Geophys Res Lett.  https://doi.org/10.1029/2002GL015050 CrossRefGoogle Scholar
  129. Masiello CA, Chadwick OA, Southon J, Torn MS, Harden JW (2004) Weathering controls on mechanisms of carbon storage in grassland soils. Glob Biogeochem Cycle.  https://doi.org/10.1029/2004GB002219 CrossRefGoogle Scholar
  130. Mataix-Solera J, Cerdà A, Arcenegui V, Jordán A, Zavala LM (2011) Fire effects on soil aggregation: a review. Earth Sci Rev 109:44–60.  https://doi.org/10.1016/j.earscirev.2011.08.002 CrossRefGoogle Scholar
  131. May AA, Levin EJT, Hennigan CJ, Riipinen I, Lee T, Collett JL, Jimenez JL, Kreidenweis SM, Robinson AL (2013) Gas-particle partitioning of primary organic aerosol emissions: 3. Biomass burning. J Geophys Res- Atmos 118:11327–11338.  https://doi.org/10.1002/jgrd.50828 CrossRefGoogle Scholar
  132. McConnell JR, Edwards R, Kok GL, Flanner MG, Zender CS, Saltzman ES, Banta JR, Pasteris DR, Carter MM, Kahl JDW (2007) 20th-century industrial black carbon emissions altered arctic climate forcing. Science 317:1381–1384.  https://doi.org/10.1126/science.1144856 CrossRefGoogle Scholar
  133. McNeill VF, Grannas AM, Abbatt JPD, Ammann M, Ariya P, Bartels-Rausch T, Domine F, Donaldson DJ, Guzman MI, Heger D, Kahan TF, Klán P, Masclin S, Toubin C, Voisin D (2012) Organics in environmental ices: sources, chemistry, and impacts. Atmos Chem Phys 12:9653–9678.  https://doi.org/10.5194/acp-12-9653-2012 CrossRefGoogle Scholar
  134. Ménégoz M, Krinner G, Balkanski Y, Boucher O, Cozic A, Lim S, Ginot P, Laj P, Gallée H, Wagnon P, Marinoni A, Jacobi HW (2014) Snow cover sensitivity to black carbon deposition in the Himalayas: from atmospheric and ice core measurements to regional climate simulations. Atmos Chem Phys 14:4237–4249.  https://doi.org/10.5194/acp-14-4237-2014 CrossRefGoogle Scholar
  135. Meng X, Zhang H, Liu C, Xiao R (2016) Comparison of acids and sulfates for producing levoglucosan and levoglucosenone by selective catalytic fast pyrolysis of cellulose using Py-GC/MS. Energy Fuel 30:8369–8376.  https://doi.org/10.1021/acs.energyfuels.6b01436 CrossRefGoogle Scholar
  136. Mikutta R, Mikutta C, Kalbitz K, Scheel T, Kaiser K, Jahn R (2007) Biodegradation of forest floor organic matter bound to minerals via different binding mechanisms. Geochim Cosmochim Acta 71:2569–2590.  https://doi.org/10.1016/j.gca.2007.03.002 CrossRefGoogle Scholar
  137. Munchak LA, Schichtel BA, Sullivan AP, Holden AS, Kreidenweis SM, Malm WC, Collett JL (2011) Development of wildland fire particulate smoke marker to organic carbon emission ratios for the conterminous United States. Atmos Environ 45:395–403.  https://doi.org/10.1016/j.atmosenv.2010.10.006 CrossRefGoogle Scholar
  138. Muñoz-Carpena R, Lauvernet C, Carluer N (2018) Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips—Part 1: nonuniform infiltration and soil water redistribution. Hydrol Earth Syst Sci 22:53–70.  https://doi.org/10.5194/hess-22-53-2018 CrossRefGoogle Scholar
  139. Myers-Pigg AN, Louchouarn P, Amon RMW, Prokushkin A, Pierce K, Rubtsov A (2015) Labile pyrogenic dissolved organic carbon in major Siberian Arctic rivers: implications for wildfire-stream metabolic linkages. Geophys Res Lett 42:377–385.  https://doi.org/10.1002/2014GL062762 CrossRefGoogle Scholar
  140. Myers-Pigg AN, Griffin RJ, Louchouarn P, Norwood MJ, Sterne A, Cevik BK (2016) Signatures of biomass burning aerosols in the plume of a saltmarsh wildfire in South Texas. Environ Sci Technol 50:9308–9314.  https://doi.org/10.1021/acs.est.6b02132 CrossRefGoogle Scholar
  141. Myers-Pigg AN, Louchouarn P, Teisserenc R (2017) Flux of dissolved and particulate low-temperature pyrogenic carbon from two high-latitude rivers across the spring freshet hydrograph. Front Mar Sci.  https://doi.org/10.3389/fmars.2017.00038 CrossRefGoogle Scholar
  142. Nieva Lobos ML, Campitelli P, Volpe MA, Moyano EL (2016) Catalytic and non-catalytic pyrolysis of Kraft pulp waste into anhydrosugars containing bio-oils and non-phytotoxic biochars. J Anal Appl Pyrol 122:216–223.  https://doi.org/10.1016/j.jaap.2016.09.021 CrossRefGoogle Scholar
  143. Norwood MJ, Louchouarn P, Kuo L-J, Harvey OR (2013) Characterization and biodegradation of water-soluble biomarkers and organic carbon extracted from low temperature chars. Org Geochem 56:111–119.  https://doi.org/10.1016/j.orggeochem.2012.12.008 CrossRefGoogle Scholar
  144. Or D, Smets BF, Wraith JM, Dechesne A, Friedman SP (2007) Physical constraints affecting bacterial habitats and activity in unsaturated porous media: a review. Adv Water Resour 30:1505–1527.  https://doi.org/10.1016/j.advwatres.2006.05.025 CrossRefGoogle Scholar
  145. Oros DR, Simoneit BRT (2001a) Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. Temperate climate conifers. Appl Geochem 16:1513–1544.  https://doi.org/10.1016/S0883-2927(01)00021-X CrossRefGoogle Scholar
  146. Oros DR, Simoneit BRT (2001b) Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 2. Deciduous trees. Appl Geochem 16:1545–1565.  https://doi.org/10.1016/S0883-2927(01)00022-1 CrossRefGoogle Scholar
  147. Oros D, Mazurek M, Baham J, Simoneit B (2002) Organic tracers from wild fire residues in soils and rain/river wash-out. Water Air Soil Poll 137:203–233.  https://doi.org/10.1023/A:1015557301467 CrossRefGoogle Scholar
  148. Oros DR, Abas MR, Omar YMJ, Rahman NA, Simoneit BRT (2006) Identification and emission factors of molecular tracers in organic aerosols from biomass burning: part 3. Grasses. Appl Geochem 21:919–940.  https://doi.org/10.1016/j.apgeochem.2006.01.008 CrossRefGoogle Scholar
  149. Otto A, Gondokusumo R, Simpson MJ (2006) Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta, Canada. Appl Geochem 21:166–183.  https://doi.org/10.1016/j.apgeochem.2005.09.007 CrossRefGoogle Scholar
  150. Paglione M, Saarikoski S, Carbone S, Hillamo R, Facchini MC, Finessi E, Giulianelli L, Carbone C, Fuzzi S, Moretti F, Tagliavini E, Swietlicki E, Eriksson Stenström K, Prévôt ASH, Massoli P, Canaragatna M, Worsnop D, Decesari S (2014) Primary and secondary biomass burning aerosols determined by proton nuclear magnetic resonance (1H-NMR) spectroscopy during the 2008 EUCAARI campaign in the Po Valley (Italy). Atmos Chem Phys 14:5089–5110.  https://doi.org/10.5194/acp-14-5089-2014 CrossRefGoogle Scholar
  151. Peters KE, Walters CC, Moldowan JMn (2005) The biomarker guide. Cambridge University Press, CambridgeGoogle Scholar
  152. Petters MD, Prenni AJ, Kreidenweis SM, DeMott PJ, Matsunaga A, Lim YB, Ziemann PJ (2006) Chemical aging and the hydrophobic-to-hydrophilic conversion of carbonaceous aerosol. Geophys Res Lett.  https://doi.org/10.1029/2006GL027249 CrossRefGoogle Scholar
  153. Pietrogrande MC, Bacco D, Rossi M (2013) Chemical characterization of polar organic markers in aerosols in a local area around Bologna, Italy. Atmos Environ 75:279–286.  https://doi.org/10.1016/j.atmosenv.2013.04.023 CrossRefGoogle Scholar
  154. Pomata D, Di Filippo P, Riccardi C, Buiarelli F, Gallo V (2014) Determination of non-certified levoglucosan, sugar polyols and ergosterol in NIST Standard Reference Material 1649a. Atmos Environ 84:332–338.  https://doi.org/10.1016/j.atmosenv.2013.11.069 CrossRefGoogle Scholar
  155. Pósfai M, Gelencsér A, Simonics R, Arató K, Li J, Hobbs PV, Buseck PR (2004) Atmospheric tar balls: particles from biomass and biofuel burning. J Geophys Res.  https://doi.org/10.1029/2003JD004169 CrossRefGoogle Scholar
  156. Pyle LA, Magee KL, Gallagher ME, Hockaday WC, Masiello CA (2017) Short-term changes in physical and chemical properties of soil charcoal support enhanced landscape mobility. J Geophys Res 122:3098–3107.  https://doi.org/10.1002/2017JG003938 CrossRefGoogle Scholar
  157. Radzi bin Abas M, Oros DR, Simoneit BRT (2004) Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere 55:1089–1095.  https://doi.org/10.1016/j.chemosphere.2004.02.002 CrossRefGoogle Scholar
  158. Rasmussen C, Torn MS, Southard RJ (2005) Mineral assemblage and aggregates control carbon dynamics in a California conifer forest. Soil Sci Soc Am J 69:1711.  https://doi.org/10.2136/sssaj2005.0040 CrossRefGoogle Scholar
  159. Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter: a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158.  https://doi.org/10.1007/s11104-010-0391-5 CrossRefGoogle Scholar
  160. Rumpel C, Chaplot V, Planchon O, Bernadou J, Valentin C, Mariotti A (2006) Preferential erosion of black carbon on steep slopes with slash and burn agriculture. CATENA 65:30–40.  https://doi.org/10.1016/j.catena.2005.09.005 CrossRefGoogle Scholar
  161. Rumpel C, Ba A, Darboux F, Chaplot V, Planchon O (2009) Erosion budget and process selectivity of black carbon at meter scale. Geoderma 154:131–137.  https://doi.org/10.1016/j.geoderma.2009.10.006 CrossRefGoogle Scholar
  162. Saarnio K, Teinilä K, Saarikoski S, Carbone S, Gilardoni S, Timonen H, Aurela M, Hillamo R (2013) Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler: high-performance anion-exchange chromatography: mass spectrometry (PILS–HPAEC–MS). Atmos Meas Tech 6:2839–2849.  https://doi.org/10.5194/amt-6-2839-2013 CrossRefGoogle Scholar
  163. Sang XF, Gensch I, Laumer W, Kammer B, Chan CY, Engling G, Wahner A, Wissel H, Kiendler-Scharr A (2012) Stable carbon isotope ratio analysis of anhydrosugars in biomass burning aerosol particles from source samples. Environ Sci Technol 46:3312–3318.  https://doi.org/10.1021/es204094v CrossRefGoogle Scholar
  164. Sang XF, Gensch I, Kammer B, Khan A, Kleist E, Laumer W, Schlag P, Schmitt SH, Wildt J, Zhao R, Mungall EL, Abbatt JPD, Kiendler-Scharr A (2016) Chemical stability of levoglucosan: an isotopic perspective. Geophys Res Lett 43:5419–5424.  https://doi.org/10.1002/2016GL069179 CrossRefGoogle Scholar
  165. Santín C, Doerr SH, Kane ES, Masiello CA, Ohlson M, de la Rosa JM, Preston CM, Dittmar T (2016) Towards a global assessment of pyrogenic carbon from vegetation fires. Glob Chang Biol 22:76–91.  https://doi.org/10.1111/gcb.12985 CrossRefGoogle Scholar
  166. Santín C, Doerr SH, Merino A, Bucheli TD, Bryant R, Ascough P, Gao X, Masiello CA (2017) Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars. Sci Rep.  https://doi.org/10.1038/s41598-017-10455-2 CrossRefGoogle Scholar
  167. Sarotti AM (2014) Theoretical insight into the pyrolytic deformylation of levoglucosenone and isolevoglucosenone. Carbohydr Res 390:76–80.  https://doi.org/10.1016/j.carres.2014.03.017 CrossRefGoogle Scholar
  168. Saunders SM, Jenkin ME, Derwent RG, Pilling MJ (2003) Protocol for the development of the master chemical mechanism, MCM v3 (part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos Chem Phys 3:161–180.  https://doi.org/10.5194/acp-3-161-2003 CrossRefGoogle Scholar
  169. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289.  https://doi.org/10.1146/annurev-arplant-042809-112315 CrossRefGoogle Scholar
  170. Schkolnik G, Rudich Y (2006) Detection and quantification of levoglucosan in at mospheric aerosols: a review. Anal Bioanal Chem 385:26–33.  https://doi.org/10.1007/s00216-005-0168-5 CrossRefGoogle Scholar
  171. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56.  https://doi.org/10.1038/nature10386 CrossRefGoogle Scholar
  172. Schneider MPW, Smittenberg RH, Dittmar T, Schmidt MWI (2011) Comparison of gas with liquid chromatography for the determination of benzenepolycarboxylic acids as molecular tracers of black carbon. Org Geochem 42:275–282.  https://doi.org/10.1016/j.orggeochem.2011.01.003 CrossRefGoogle Scholar
  173. Schreuder LT, Hopmans EC, Stuut J-BW, Sinninghe Damsté JS, Schouten S (2018) Transport and deposition of the fire biomarker levoglucosan across the tropical North Atlantic Ocean. Geochim Cosmochim Acta.  https://doi.org/10.1016/j.gca.2018.02.020 CrossRefGoogle Scholar
  174. Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kögel-Knabner I, Schulze E-D (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10:1675–1691.  https://doi.org/10.5194/bg-10-1675-2013 CrossRefGoogle Scholar
  175. Schüpbach S, Kirchgeorg T, Colombaroli D, Beffa G, Radaelli M, Kehrwald NM, Barbante C (2015) Combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya Lowlands of Petén, Guatemala. Quat Sci Rev 115:123–131.  https://doi.org/10.1016/j.quascirev.2015.03.004 CrossRefGoogle Scholar
  176. Sedlacek AJ III, Buseck PR, Adachi K, Onasch TB, Springston SR, Kleinman L (2018) Formation and evolution of tar balls from northwestern US wildfires. Atmos Chem Phys 18:11289–11301.  https://doi.org/10.5194/acp-18-11289-2018 CrossRefGoogle Scholar
  177. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics: from air pollution to climate change. Wiley, HobokenGoogle Scholar
  178. Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrol 3:283–305.  https://doi.org/10.1016/0165-2370(82)80017-X CrossRefGoogle Scholar
  179. Shafizadeh F (1984) The Chemistry of Pyrolysis and Combustion. In: Rowell R (ed) The chemistry of solid wood. Am Chem Soc, Washington, DC, pp 489–529CrossRefGoogle Scholar
  180. Shafizadeh F, Fu YL (1973) Pyrolysis of cellulose. Carbohydr Res 29:113–122.  https://doi.org/10.1016/S0008-6215(00)82074-1 CrossRefGoogle Scholar
  181. Shafizadeh F, Sekiguchi Y (1984) Oxidation of chars during smoldering combustion of cellulosic materials. Combust Flame 55:171–179.  https://doi.org/10.1016/0010-2180(84)90025-7 CrossRefGoogle Scholar
  182. Shakya KM, Louchouarn P, Griffin RJ (2011) Lignin-derived phenols in houston aerosols: implications for natural background sources. Environ Sci Technol 45:8268–8275.  https://doi.org/10.1021/es201668y CrossRefGoogle Scholar
  183. Sheesley RJ, Mieritz M, DeMinter JT, Shelton BR, Schauer JJ (2015) Development of an in situ derivatization technique for rapid analysis of levoglucosan and polar compounds in atmospheric organic aerosol. Atmos Environ 123:251–255.  https://doi.org/10.1016/j.atmosenv.2015.10.047 CrossRefGoogle Scholar
  184. Shi G, Wang X-C, Li Y, Trengove R, Hu Z, Mi M, Li X, Yu J, Hunter B, He T (2019) Organic tracers from biomass burning in snow from the coast to the ice sheet summit of East Antarctica. Atmos Environ 201:231–241.  https://doi.org/10.1016/j.atmosenv.2018.12.058 CrossRefGoogle Scholar
  185. Shiraiwa M, Pöschl U, Knopf DA (2012) Multiphase chemical kinetics of NO3 radicals reacting with organic aerosol components from biomass burning. Environ Sci Technol 46:6630–6636.  https://doi.org/10.1021/es300677a CrossRefGoogle Scholar
  186. Sikes EL, Medeiros PM, Augustinus P, Wilmshurst JM, Freeman KR (2013) Seasonal variations in aridity and temperature characterize changing climate during the last deglaciation in New Zealand. Quat Sci Rev 74:245–256.  https://doi.org/10.1016/j.quascirev.2013.01.031 CrossRefGoogle Scholar
  187. Simoneit BRT (2002) Biomass burning: a review of organic tracers for smoke from incomplete combustion. Appl Geochemy 17:129–162.  https://doi.org/10.1016/S0883-2927(01)00061-0 CrossRefGoogle Scholar
  188. Simoneit BRT, Elias VO (2000) Organic tracers from biomass burning in atmospheric particulate matter over the ocean. Mar Chem 69:301–312.  https://doi.org/10.1016/S0304-4203(00)00008-6 CrossRefGoogle Scholar
  189. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182.  https://doi.org/10.1016/S1352-2310(98)00145-9 CrossRefGoogle Scholar
  190. Simoneit BRT, Elias VO, Kobayashi M, Kawamura K, Rushdi AI, Medeiros PM, Rogge WF, Didyk BM (2004) Sugars-dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environ Sci Technol 38:5939–5949.  https://doi.org/10.1021/es0403099 CrossRefGoogle Scholar
  191. Slade JH, Knopf DA (2014) Multiphase OH oxidation kinetics of organic aerosol: the role of particle phase state and relative humidity. Geophys Res Lett 41:5297–5306.  https://doi.org/10.1002/2014GL060582 CrossRefGoogle Scholar
  192. Slade JH, Thalman R, Wang J, Knopf DA (2015) Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity. Atmos Chem Phys 15:10183–10201.  https://doi.org/10.5194/acp-15-10183-2015 CrossRefGoogle Scholar
  193. Steinborn D, Junicke H (2000) Carbohydrate complexes of platinum-group metals. Chem Rev 100:4283–4318.  https://doi.org/10.1021/cr9903050 CrossRefGoogle Scholar
  194. Stubbins A, Spencer RGM, Chen H, Hatcher PG, Mopper K, Hernes PJ, Mwamba VL, Mangangu AM, Wabakanghanzi JN, Six J (2010) Illuminated darkness: molecular signatures of Congo River dissolved organic matter and its photochemical alteration as revealed by ultrahigh precision mass spectrometry. Limnol Oceanogr 55:1467–1477.  https://doi.org/10.4319/lo.2010.55.4.1467 CrossRefGoogle Scholar
  195. Stubbins A, Niggemann J, Dittmar T (2012) Photo-lability of deep ocean dissolved black carbon. Biogeosciences 9:1661–1670.  https://doi.org/10.5194/bg-9-1661-2012 CrossRefGoogle Scholar
  196. Sugiura M, Nakahara M, Yamada C, Arakawa T, Kitaoka M, Fushinobu S (2018) Identification, functional characterization, and crystal structure determination of bacterial levoglucosan dehydrogenase. J Biol Chem 293:17375–17386.  https://doi.org/10.1074/jbc.RA118.004963 CrossRefGoogle Scholar
  197. Sullivan AP, Holden AS, Patterson LA, McMeeking GR, Kreidenweis SM, Malm WC, Hao WM, Wold CE, Collett JL (2008) A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM 25 organic carbon. J Geophys Res.  https://doi.org/10.1029/2008JD010216 CrossRefGoogle Scholar
  198. Sullivan AP, May AA, Lee T, McMeeking GR, Kreidenweis SM, Akagi SK, Yokelson RJ, Urbanski SP, Collett JL Jr (2014) Airborne characterization of smoke marker ratios from prescribed burning. Atmos Chem Phys 14:10535–10545.  https://doi.org/10.5194/acp-14-10535-2014 CrossRefGoogle Scholar
  199. Sullivan AP, Guo H, Schroder JC, Campuzano-Jost P, Jimenez JL, Campos T, Shah V, Jaeglé L, Lee BH, Lopez-Hilfiker FD, Thornton JA, Brown SS, Weber RJ (2019) biomass burning markers and residential burning in the winter aircraft campaign. J Geophys Res.  https://doi.org/10.1029/2017JD028153 CrossRefGoogle Scholar
  200. Sumlin BJ, Oxford CR, Seo B, Pattison RR, Williams BJ, Chakrabarty RK (2018) Density and homogeneous internal composition of primary brown carbon aerosol. Environ Sci Technol 52:3982–3989.  https://doi.org/10.1021/acs.est.8b00093 CrossRefGoogle Scholar
  201. Sumner ME (2000) Handbook of soil science. CRC Press, Boca RatonGoogle Scholar
  202. Thevenon F, Anselmetti FS, Bernasconi SM, Schwikowski M (2009) Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium. J Geophys Res.  https://doi.org/10.1029/2008JD011490 CrossRefGoogle Scholar
  203. Thuens S, Blodau C, Wania F, Radke M (2014) Comparison of atmospheric travel distances of several pahs calculated by two fate and transport models (The Tool and ELPOS) with experimental values derived from a peat bog transect. Atmosphere 5:324–341.  https://doi.org/10.3390/atmos5020324 CrossRefGoogle Scholar
  204. Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389:170–173.  https://doi.org/10.1038/38260 CrossRefGoogle Scholar
  205. Tóth A, Hoffer A, Nyirő-Kósa I, Pósfai M, Gelencsér A (2014) Atmospheric tar balls: aged primary droplets from biomass burning? Atmos Chem Phys 14:6669–6675.  https://doi.org/10.5194/acp-14-6669-2014 CrossRefGoogle Scholar
  206. Urban RC, Alves CA, Allen AG, Cardoso AA, Queiroz MEC, Campos MLAM (2014) Sugar markers in aerosol particles from an agro-industrial region in Brazil. Atmos Environ 90:106–112.  https://doi.org/10.1016/j.atmosenv.2014.03.034 CrossRefGoogle Scholar
  207. Vakkari V, Kerminen V-M, Beukes JP, Tiitta P, van Zyl PG, Josipovic M, Venter AD, Jaars K, Worsnop DR, Kulmala M, Laakso L (2014) Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophys Res Lett 41:2644–2651.  https://doi.org/10.1002/2014GL059396 CrossRefGoogle Scholar
  208. Vassura I, Venturini E, Marchetti S, Piazzalunga A, Bernardi E, Fermo P, Passarini F (2014) Markers and influence of open biomass burning on atmospheric particulate size and composition during a major bonfire event. Atmos Environ 82:218–225.  https://doi.org/10.1016/j.atmosenv.2013.10.037 CrossRefGoogle Scholar
  209. Wagner S, Cawley KM, Rosario-Ortiz FL, Jaffé R (2015) In-stream sources and links between particulate and dissolved black carbon following a wildfire. Biogeochemistry 124:145–161.  https://doi.org/10.1007/s10533-015-0088-1 CrossRefGoogle Scholar
  210. Wagner S, Jaffé R, Stubbins A (2018) Dissolved black carbon in aquatic ecosystems: dissolved black carbon review. Limnol Oceanogr Lett 3:168–185.  https://doi.org/10.1002/lol2.10076 CrossRefGoogle Scholar
  211. Wakeham SG, Canuel EA, Lerberg EJ, Mason P, Sampere TP, Bianchi TS (2009) Partitioning of organic matter in continental margin sediments among density fractions. Mar Chem 115:211–225.  https://doi.org/10.1016/j.marchem.2009.08.005 CrossRefGoogle Scholar
  212. Walgraeve C, Demeestere K, Dewulf J, Zimmermann R, Van Langenhove H (2010) Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: molecular characterization and occurrence. Atmos Environ 44:1831–1846.  https://doi.org/10.1016/j.atmosenv.2009.12.004 CrossRefGoogle Scholar
  213. Wang S, Luo Z (2017) Pyrolysis of biomass. GREEN Alternative Energy Resources, De GruyterGoogle Scholar
  214. Wang C, Walter MT, Parlange J-Y (2013) Modeling simple experiments of biochar erosion from soil. J Hydrol 499:140–145.  https://doi.org/10.1016/j.jhydrol.2013.06.055 CrossRefGoogle Scholar
  215. Wang X, Xu C, Druffel EM, Xue Y, Qi Y (2016) Two black carbon pools transported by the Changjiang and Huanghe Rivers in China: black carbon in rivers. Glob Biogeochem Cycle 30:1778–1790.  https://doi.org/10.1002/2016GB005509 CrossRefGoogle Scholar
  216. Wang X, Thai PK, Mallet M, Desservettaz M, Hawker DW, Keywood M, Miljevic B, Paton-Walsh C, Gallen M, Mueller JF (2017) Emissions of selected semivolatile organic chemicals from forest and savannah fires. Environ Sci Technol 51:1293–1302.  https://doi.org/10.1021/acs.est.6b03503 CrossRefGoogle Scholar
  217. Whitman T, Zhu Z, Lehmann J (2014) Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon. Environ Sci Technol 48:13727–13734.  https://doi.org/10.1021/es503331y CrossRefGoogle Scholar
  218. Wiedinmyer C, Akagi SK, Yokelson RJ, Emmons LK, Al-Saadi JA, Orlando JJ, Soja AJ (2011) The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci Model Dev 4:625–641.  https://doi.org/10.5194/gmd-4-625-2011 CrossRefGoogle Scholar
  219. Xie M, Hannigan MP, Barsanti KC (2014) Gas/particle partitioning of 2-methyltetrols and levoglucosan at an urban site in Denver. Environ Sci Technol 48:2835–2842.  https://doi.org/10.1021/es405356n CrossRefGoogle Scholar
  220. You C, Xu C (2018) Review of levoglucosan in glacier snow and ice studies: recent progress and future perspectives. Sci Total Environ 616–617:1533–1539.  https://doi.org/10.1016/j.scitotenv.2017.10.160 CrossRefGoogle Scholar
  221. You C, Yao T, Xu B, Xu C, Zhao H, Song L (2016) Effects of sources, transport, and postdepositional processes on levoglucosan records in southeastern Tibetan glaciers. J Geophys Res 121:8701–8711.  https://doi.org/10.1002/2016JD024904 CrossRefGoogle Scholar
  222. You C, Yao T, Xu C (2019) Environmental significance of levoglucosan records in a central Tibetan ice core. Sci Bull 64:122–127.  https://doi.org/10.1016/j.scib.2018.12.016 CrossRefGoogle Scholar
  223. Zangrando R, Barbaro E, Zennaro P, Rossi S, Kehrwald NM, Gabrieli J, Barbante C, Gambaro A (2013) Molecular markers of biomass burning in arctic aerosols. Environ Sci Technol.  https://doi.org/10.1021/es400125r CrossRefGoogle Scholar
  224. Zennaro P, Kehrwald N, McConnell JR, Schüpbach S, Maselli OJ, Marlon J, Vallelonga P, Leuenberger D, Zangrando R, Spolaor A, Borrotti M, Barbaro E, Gambaro A, Barbante C (2014) Fire in ice: two millennia of boreal forest fire history from the Greenland NEEM ice core. Clim Past 10:1905–1924.  https://doi.org/10.5194/cp-10-1905-2014 CrossRefGoogle Scholar
  225. Zennaro P, Kehrwald N, Marlon J, Ruddiman WF, Brücher T, Agostinelli C, Dahl-Jensen D, Zangrando R, Gambaro A, Barbante C (2015) Europe on fire three thousand years ago: arson or climate? Geophys Res Lett 42:5023–5033.  https://doi.org/10.1002/2015GL064259 CrossRefGoogle Scholar
  226. Zhang Y, Lim S (2019) Drivers of wildfire occurrence patterns in the inland riverine environment of New South Wales, Australia. Forests 10:524.  https://doi.org/10.3390/f10060524 CrossRefGoogle Scholar
  227. Zhang X, Li J, Yang W, Blasiak W (2011) Formation mechanism of levoglucosan and formaldehyde during cellulose pyrolysis. Energy Fuels 25:3739–3746.  https://doi.org/10.1021/ef2005139 CrossRefGoogle Scholar
  228. Zhao R, Mungall EL, Lee AKY, Aljawhary D, Abbatt JPD (2014) Aqueous phase photooxidation of levoglucosan: a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Atmos Chem Phys 14:9695–9706.  https://doi.org/10.5194/acp-14-9695-2014 CrossRefGoogle Scholar
  229. Zimmermann M, Bird MI, Wurster C, Saiz G, Goodrick I, Barta J, Capek P, Santruckova H, Smernik R (2012) Rapid degradation of pyrogenic carbon. Glob Chang Biol 18:3306–3316.  https://doi.org/10.1111/j.1365-2486.2012.02796.x CrossRefGoogle Scholar
  230. Ziolkowski LA, Druffel ERM (2010) Aged black carbon identified in marine dissolved organic carbon. Geophys Res Lett.  https://doi.org/10.1029/2010GL043963 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Loredana G. Suciu
    • 1
    Email author
  • Caroline A. Masiello
    • 1
    • 2
    • 3
  • Robert J. Griffin
    • 4
  1. 1.Department of Earth, Environmental and Planetary SciencesRice UniversityHoustonUSA
  2. 2.Department of BiosciencesRice UniversityHoustonUSA
  3. 3.Department of ChemistryRice UniversityHoustonUSA
  4. 4.Department of Civil and Environmental EngineeringRice UniversityHoustonUSA

Personalised recommendations