Microbiology of municipal solid waste landfills: a review of microbial dynamics and ecological influences in waste bioprocessing

  • Lerato Sekhohola-DlaminiEmail author
  • Memory Tekere
Review Paper


Municipal solid waste landfills are widely used as a waste management tool and landfill microbiology is at the core of waste degradation in these ecosystems. This review investigates the microbiology of municipal solid waste landfills, focusing on the current state of knowledge pertaining to microbial diversity and functions facilitating in situ waste bioprocessing, as well as ecological factors influencing microbial dynamics in landfills. Bioprocessing of waste in municipal landfills emanates from substrate metabolism and co-metabolism by several syntrophic microorganisms, resulting in partial transformation of complex substrates into simpler polymeric compounds and complete mineralisation into inorganic salts, water and gases including the biofuel gas methane. The substrate decomposition is characterised by evolution and interactions of different bacterial, archaeal and fungal groups due to prevailing biotic and abiotic conditions in the landfills, allowing for hydrolytic, fermentative, acetogenic and methanogenic processes to occur. Application of metagenomics studies based on high throughput Next Generation Sequencing technique has advanced research on profiling of the microbial communities in municipal solid waste landfills. However, functional diversity and bioprocess dynamics, as well as key factors influencing the in situ bioprocesses involved in landfill waste degradation; the very elements that are key in determining the efficiency of municipal landfills as tools of waste management, remain ambiguous. Such gaps also hinder progressive understanding of fundamentals that underlie technology development based on waste biodegradation, and exploration of municipal waste as a bioresource.


Municipal solid waste landfills Functional diversity Waste degradation Bioprocesses Microbial ecology 



The authors wish to acknowledge support in a form of a Postdoctoral Fellowship from the College of Agriculture and Environmental Sciences research fund offered by the University of South Africa (UNISA).


  1. Aislabie J, Deslippe JR (2013) Soil microbes and their contribution to soil services. In: Dymond JR (ed) Ecosystem services in New Zealand—conditions and trends. Manaaki Whenua Press, Lincoln, pp 143–161Google Scholar
  2. Bareither CA, Wolfe GL, McMahon KD, Benson CH (2013) Microbial diversity and dynamics during methane production from municipal waste. Waste Manag 33:1982–1992CrossRefPubMedGoogle Scholar
  3. Barlaz MA, Schaefer DM, Ham RK (1989) Bacterial population development and chemical characteristics of refuse decomposition in a simulated sanitary landfill. Appl Environ Microbiol 55:55–65PubMedPubMedCentralGoogle Scholar
  4. Barlaz MA, Ham RK, Schaefer DM, Isaacson R (2009) Methane production from municipal refuse: a review of enhanced techniques and microbial dynamics. Crit Rev Environ Sci Technol 19:557–584Google Scholar
  5. Bastida F, Kandeler E, Hernández T, García C (2008) Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions. Microb Ecol 55:651–661CrossRefPubMedGoogle Scholar
  6. Beeman RE, Suflita JM (1987) Microbial ecology of a shallow unconfined ground water aquifer polluted by municipal landfill leachate. Microb Ecol 14:39–54CrossRefPubMedGoogle Scholar
  7. Beguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58CrossRefPubMedGoogle Scholar
  8. Buivid MG, Wise DL, Blanchet MJ, Remedios EC, Jenkins BM (1981) Fuel gas enhancement by controlled landfilling of municipal solid waste. Resour Conserv 6:3–20CrossRefGoogle Scholar
  9. Cardinalli-Rendez J, Colturato LFDB, Colturato TDB, Chartone-Souza E, Nascimento AMA, Sanz JL (2012) Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. Biores Technol 229:373–383CrossRefGoogle Scholar
  10. Cardinalli-Rendez J, Rojas-Ojeda P, Nascimento AMA, Sanz JL (2016) Proteolytic bacterial dominance in a full-scale municipal solid waste anaerobic reactor assessed by 454 pyrosequencing technology. Chemosphere 146:519–525CrossRefGoogle Scholar
  11. Chen YC (2016) Potential for energy recovery and greenhouse gas mitigation from municipal solid waste using a waste-to-material approach. Waste Manag 58:408–414CrossRefPubMedGoogle Scholar
  12. Chen AC, Ueda K, Sekiguchi Y, Ohashi A, Harada H (2003a) Molecular detection and direct enumeration of methanogenic Archaea and methanotrophic Bacteria in domestic solid waste landfill soils. Biotech Lett 25:1563–1569CrossRefGoogle Scholar
  13. Chen AC, Imachi H, Sekiguchi Y, Ohashi A, Harada H (2003b) Achaeal community compositions at different depths (up to 30 m) of a municipal solid waste landfill in Taiwan as revealed by 16S rDNA cloning analyses. Biotechnol Lett 25:719–724CrossRefPubMedGoogle Scholar
  14. Chroni C, Kyriacou A, Georgaki I, Manios T, Kotsou M, Lasaridi K (2009) Microbial characterization during composting of biowaste. Waste Manag 29:1520–1525CrossRefPubMedGoogle Scholar
  15. Cossu R, Morello L, Raga R, Cerminara G (2016) Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill. Waste Manag 55:83–92CrossRefPubMedGoogle Scholar
  16. Cuadros-Orellana S, Leite LR, Smith A, Medeiros JD, Badotti F, Fonseca PLC, Vaz ABM, Oliveira G, Goes-Neto A (2013) Assessment of fungal diversity in the environment using metagenomics: a decade in review. Fungal Genomics and Biology 3:110Google Scholar
  17. Dao HTN, Kuroda K, Nakahara N, Danshita T, Hatamoto M, Yamaguchi T (2016) 16S rRNA gene-based comprehensive analysis of microbial community compositions in a full-scale leachate treatment system. J Biosci Bioeng 122:708–715CrossRefPubMedGoogle Scholar
  18. Das N, Chandran P (2010) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011:1–14Google Scholar
  19. Dollhofer V, Podmirseg SM, Callaghan TM, Griffith GW, Fliegerova K (2015) Anaerobic fungi and their potential for biogas production. In: Guebitz GM, Bauer A, Bochmann G, Gronauer A, Weiss S (eds) Biogas science and technology. Springer, London, pp 1–200Google Scholar
  20. Ejlertsson J, Johansson E, Karlsson A, Meyerson E, Svensson H (1996) Anaerobic degradation of xenobiotics by organisms from municipal solid waste under landfilling conditions. Antonie Van Leeuwenhoek 69:6–74CrossRefGoogle Scholar
  21. Fang CR, Yao J, Zheng Y-G, Jiang C-J, Hua L-F, Wu Y-Y, Shen DS (2010) Dibutyl phthalate degradation by Enterobacter sp. T5 isolated from municipal solid waste in landfill bioreactor. Int Biodeterior Biodegrad 64:442–446CrossRefGoogle Scholar
  22. Fei X, Zekkos D, Raskin L (2015) Archaeal community structure in leachate and solid waste is correlated to methane generation and volume reduction during biodegradation of municipal solid waste. Waste Manag 36:184–190CrossRefPubMedGoogle Scholar
  23. Fernandez-Gonzalez JM, Grindlay AL, Serrano-Bernardo F, Rodríguez-Rojas MI, Zamorano M (2017) Economic and environmental review of waste-to-energy systems for municipal solid waste management in medium and small municipalities. Waste Manag 67:360–374CrossRefPubMedGoogle Scholar
  24. Finlay BJ, Fenchel T (1991) An anaerobic protozoon, with symbiotic methanogens, living in municipal landfill material. FEMS Microbiol Ecol 85:169–180CrossRefGoogle Scholar
  25. Fourie ABJ, Morris WF (2004) Measured gas emissions from four landfills in South Africa and some implications for landfill design and methane recovery in semi-arid climates. Waste Manag Res 22:440–453CrossRefPubMedGoogle Scholar
  26. Franke-Whittle IH, Confalonieri A, Insam H, Schlegelmilch M, Körner I (2014) Changes in the microbial communities during co-composting of digestates. Waste Manag 34:632–641CrossRefPubMedPubMedCentralGoogle Scholar
  27. Garcia-Gil JC, Plaza C, Soler-Rovira P, Polo A (2000) Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem 32:1907–1913CrossRefGoogle Scholar
  28. Gautam SP, Bundela PS, Pandey AK, Awasthi MK, Sarsaiya S (2011) Isolation, identification and culturing optimization of indigenous fungal isolates as a potential bioconversion agent of municipal solid waste. Ann Environ Sci 5:23–34Google Scholar
  29. Gautam SP, Bundela PS, Pandey X, Jamaluddin AK, Awasthi MK, Sarsaiya S (2012) Diversity of cellulolytic microbes and the biodegradation of municipal solid waste by a potential strain. Int J Microbiol 2012:1–12CrossRefGoogle Scholar
  30. Ge S, Liu L, Xue Q, Yuan Z (2016) Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors. Waste Manag 55:93–98CrossRefPubMedGoogle Scholar
  31. Gomez AM, Yannarell AC, Sims GK, Cadavid-Restrepo G, Herrera CXM (2011) Characterization of bacterial diversity at different depths in the Moravia Hill landfill site at Medellín, Colombia. Soil Biol Biochem 43:1275–1284CrossRefGoogle Scholar
  32. Griffith GW, Baker S, Fliegerova K, Liggenstoffer A, van der Giezen M, Voigt K, Beakes G (2010) Anaerobic fungi: Neocallimastigomycota. IMA Fungus 1:181–185CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90:1–17CrossRefPubMedGoogle Scholar
  34. Gupta J, Rathour R, Kumar M, Thakur IS (2017) Metagenomic analysis of microbial diversity in landfill lysimeter soil of Ghazipur Landfill Site, New Delhi, India. Genome Announc 5:01104CrossRefGoogle Scholar
  35. Hamad I, Ranque S, Azhar EI, Yasir M, Jiman-Fatani AA, Tissot-Dupont H, Raoult D, Bittar F (2017) Culturomics and amplicon-based metagenomic approaches for the study of fungal population in human gut microbiota. Sci Rep 7:16788CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hassen A, Belguith K, Jedidi N, Cherif A, Cherif M, Boudabous A (2001) Microbial characterisation during composting of municipal solid waste. Biores Technol 80:217–225CrossRefGoogle Scholar
  37. He Y, Xie K, Xu P, Huang X, Gu W, Zhang F, Tang S (2013) Evolution of microbial community diversity and enzymatic activity during composting. Res Microbiol 164:189–198CrossRefPubMedGoogle Scholar
  38. Hrad M, Huber-Humer M (2017) Performance and completion assessment of an in-situ aerated municipal solid waste landfill—final scientific documentation of an Austrian case study. Waste Manag 63:397–409CrossRefPubMedGoogle Scholar
  39. Huang L-N, Zhou H, Chen Y-Q, Luo S, Lan C-Y, Qu L-H (2002) Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiol Ecol 214:235–240CrossRefGoogle Scholar
  40. Huang L-N, Chen Y-Q, Zhou H, Luo S, Lan C-Y, Quo L (2003) Characterization of methanogenic Archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46:171–177CrossRefPubMedGoogle Scholar
  41. Huang L-N, Zhou H, Zhu S, Qu L-H (2004) Phylogenetic diversity of bacteria in the leachate of a full-scale recirculating landfill. FEMS Microbiol Ecol 50:175–183CrossRefPubMedGoogle Scholar
  42. Huang L-N, Zhu S, Zhou H, Qu L-H (2005) Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. FEMS Microbiol Lett 242:297–303CrossRefPubMedGoogle Scholar
  43. Jiang J, Zhang Y, Li K, Wang Q, Gong C, Li M (2013) Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Biores Technol 143:525–530CrossRefGoogle Scholar
  44. Joshi A, Lanjekar VB, Dhakephalkar PK, Callaghan TM, Griffith GW, Dagar SS (2018) Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. MycoKeys 40:89–110CrossRefGoogle Scholar
  45. Kallistova AU, Kevbrina MV, Nekrasova VK, Shnyrev NA, Einola J-KM, Kulomaa MS, Rintala JA, Nozhevnikova AN (2007) Enumeration of methanotrophic bacteria in the cover soil of an aged municipal landfill. Microb Ecol 54:637–645CrossRefPubMedGoogle Scholar
  46. Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72:5138–5141CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kayhanian M (1995) Biodegradability of the organic fraction of municipal solid waste in a high-solids anaerobic digester. Waste Manag Res 13:123–136CrossRefGoogle Scholar
  48. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of Acidobacteria: moving beyond genes and genomes. Front Microbiol 7(744):1–16Google Scholar
  49. Kielak AM, Castellane TCL, Campanharo JC, Colnago LA, Costa OYA, da Silva MLC, van Veen JA, Lemos EGM, Kuramae EE (2017) Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications. Sci Rep 7:41193CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32(4):297–336CrossRefGoogle Scholar
  51. Korai MS, Mahar RB, Uqaili MA (2017) The feasibility of municipal solid waste for energy generation and its existing management practices in Pakistan. Renew Sustain Energy Rev 72:338–353CrossRefGoogle Scholar
  52. Krishnamurthi S, Chakrabarti T (2013) Diversity of bacteria and archaea from a landfill in Chandigarh, India as revealed by culture-dependent and culture-independent molecular approaches. Syst Appl Microbiol 36:56–68CrossRefPubMedGoogle Scholar
  53. Kumar A, Samadder SR (2017) A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag 69:407–422CrossRefPubMedGoogle Scholar
  54. Kumar S, Chiemchaisri C, Mudhoo A (2011) Bioreactor landfill technology in municipal solid waste treatment: an overview. Crit Rev Biotechnol 31:77–97CrossRefPubMedGoogle Scholar
  55. Laloui-Carpentier W, Li T, Vigneron V, Mazéas L, Bouchez T (2006) Methanogenic diversity and activity in municipal solid waste landfill leachates. Antonie Van Leeuwenhoek 89:423–434CrossRefPubMedGoogle Scholar
  56. Lenhart K, Bunge B, Ratering S, Neu TR, Schüttmann I, Greule M, Kammann C, Schnell S, Müller C, Zorn H, Keppler F (2012) Evidence for methane production by saprotrophic fungi. Nat Commun 3:1046CrossRefPubMedGoogle Scholar
  57. Leven L, Eriksson ARB, Schnurer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693CrossRefPubMedGoogle Scholar
  58. Liu Y, Xing P, Liu J (2017) Environmental performance evaluation of different municipal solid waste management scenarios in China. Resour Conserv Recycl 125:98–106CrossRefGoogle Scholar
  59. Lockhart RJ, Van Dyke MI, Beadle IR, Humphreys P, McCarthy AJ (2006) Molecular biological detection of anaerobic gut fungi (Neocallimastigales) from landfill sites. Appl Environ Microbiol 72:5659–5661CrossRefPubMedPubMedCentralGoogle Scholar
  60. Lopes dos Santos A, Peixoto R, Rosado AS (2009) New approaches to understanding microbial diversity in wastewater, landfills and leachate treatment. Oecol Brasiliensis 13:631–648Google Scholar
  61. Lou J, Yang L, Wang H, Wu L, Xu J (2018) Assessing soil bacterial community and dynamics by integrated high-throughput absolute abundance quantification. PeerJ 6:e4514CrossRefPubMedPubMedCentralGoogle Scholar
  62. Lu MC, Chen YY, Chiou MR, Chen MY, Fan HJ (2016) Occurrence and treatment efficiency of pharmaceuticals in landfill leachates. Waste Manag 55:257–264CrossRefPubMedGoogle Scholar
  63. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530CrossRefPubMedGoogle Scholar
  64. Malinauskaite J, Jouhara H, Czajczynska D, Stanchev P, Katsou E, Rostkowski P, Thorne RJ, Colon RJ, Ponsa S, Al-Mansour F, Anguilano L, Krzyzynska R, Lopez IC, Vlasopoulos A, Spencer N (2017) Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe. Energy 141:2013–2044CrossRefGoogle Scholar
  65. Matsakas L, Gao Q, Jansson S, Rova U, Christakopoulos P (2017) Review: Green conversion of municipal solid wastes into fuels and chemicals. Electron J Biotechnol 26:69–83CrossRefGoogle Scholar
  66. Mazzei L, Musiani F, Ciurli S (2017) Urease. In: Zamble D, Rowińska-Żyrek M, Kozłowski H (eds) RSC metallobiology. Royal Society of Chemistry, London.Google Scholar
  67. McDonald JE, Lockhart RJ, Cox MJ, Allison HE, McCarthy AJ (2008) Detection of novel Fibrobacter populations in landfill sites and determination of their relative abundance via quantitative PCR. Environ Microbiol 10:1310–1319CrossRefPubMedGoogle Scholar
  68. McDonald JE, Allison HE, McCarthy AJ (2010) Composition of the landfill microbial community as determined by application of domain- and group-specific 16S and 18S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 76:1301–1306CrossRefPubMedGoogle Scholar
  69. McDonald JE, Houghton JNI, Rooks DJ, Allison HE, McCarthy AJ (2012) The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for Fibrobacters. Environ Microbiol 14:1077–1087CrossRefPubMedGoogle Scholar
  70. Moya D, Aldásb C, Lópeza G, Kaparajuc P (2017) Municipal solid waste as a valuable renewable energy resource: a worldwide opportunity of energy recovery by using waste-to-energy technologies. Energy Procedia 134:286–295CrossRefGoogle Scholar
  71. Muenmee S, Chiemchaisri W, Chiemchaisri C (2016) Enhancement of biodegradation of plastic wastes via methane oxidation in semi-aerobic landfill. Int Biodeterior Biodegrad 113:244–255CrossRefGoogle Scholar
  72. Musson SE, Townsend GT (2009) Pharmaceutical compound content of municipal solid waste. J Hazard Mater 162:730–735CrossRefPubMedGoogle Scholar
  73. Mwaikono KS, Maina S, Sebastian A, Schilling M, Kapur V, Gwakisa P (2016) High-throughput sequencing of 16S rRNA gene reveals substantial bacterial diversity on the municipal dumpsite. BMC Microbiol 16:145–157CrossRefPubMedPubMedCentralGoogle Scholar
  74. Naveen BP, Mahapatra DM, Sitharam TG, Sivapullaiah PV, Ramachandra TV (2017) Physico-chemical and biological characterization of urban municipal landfill leachate. Environ Pollut 220:1–12CrossRefPubMedGoogle Scholar
  75. Noor ZZ, Yusuf RO, Abba AH, Hassan MAA, Din MFM (2013) An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario. Renew Sustain Energy Rev 20:378–384CrossRefGoogle Scholar
  76. O’Dwyer J, Walshe D, Byrne KA (2018) Wood waste decomposition in landfills: an assessment of current knowledge and implications for emissions reporting. Waste Manag 73:181–188CrossRefPubMedGoogle Scholar
  77. Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G, Arvanitidis C, Iliopoulos I (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinform Biol Insights 9:75–88CrossRefPubMedPubMedCentralGoogle Scholar
  78. Patil BS, Agnes AC, Singh DN (2017) Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills. Waste Manag Res 3:301–312CrossRefGoogle Scholar
  79. Perez-Leblic MI, Turmero A, Hernández M, Hernández AJ, Pastor J, Ball AS, Rodríguez J, Arias ME (2012) Influence of xenobiotic contaminants on landfill soil microbial activity and diversity. J Environ Manag 95:S285–S290CrossRefGoogle Scholar
  80. Pignataro A, Moscatelli MC, Mocali S, Grego S, Benedettia A (2012) Assessment of soil microbial functional diversity in a coppiced forest system. Appl Soil Ecol 62:115–123CrossRefGoogle Scholar
  81. Poggi-Varaldo HM, Rodriguez-Vazquez R, Fernandez-Villagomez G, Esparza-Garcia F (1997) Inhibition of mesophilic solid-substrate anaerobic digestion by ammonia nitrogen. Appl Microbiol Biotechnol 47:284–291CrossRefGoogle Scholar
  82. Pourcher AM, Sutra L, Hébé I, Moguedet G, Bollet C, Simoneau P, Gardan L (2001) Enumeration and characterization of cellulolytic bacteria from refuse of a landfill. FEMS Microbiol Ecol 34:229–241CrossRefPubMedGoogle Scholar
  83. Pubule J, Blumberga A, Romagnoli F, Blumberga D (2015) Finding an optimal solution for biowaste management in the Baltic States. J Clean Prod 88:214–223CrossRefGoogle Scholar
  84. Qiao M, Ying GG, Singer AC, Zhu YG (2018) Review of antibiotic resistance in China and its environment. Environ Int 110:160–172CrossRefPubMedGoogle Scholar
  85. Rajaeifar MA, Ghanavati H, Dashti BB, Heijungs R, Aghbashlo M, Tabatabaei M (2017) Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: a comparative review. Renew Sustain Energy Rev 79:414–439CrossRefGoogle Scholar
  86. Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE (2012) The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63:267–281CrossRefPubMedGoogle Scholar
  87. Reinhart DR, Al-Yousfi AB (1996) The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Manag Res 14:337–346CrossRefGoogle Scholar
  88. Rolf D (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478CrossRefGoogle Scholar
  89. Sang NN, Soda S, Ishigaki T, Ike M (2012) Microorganisms in landfill bioreactors for accelerated stabilization of solid wastes. J Biosci Bioeng 114:243–250CrossRefPubMedGoogle Scholar
  90. Sawamura H, Yamada M, Endo K, Soda S, Ishigaki T, Ike M (2010) Characterization of microorganisms at different landfill depths using carbon-utilization patterns and 16S rRNA gene based T-RFLP. J Biosci Bioeng 109:130–137CrossRefPubMedGoogle Scholar
  91. Sekhohola LM, Igbinigie EE, Cowan AK (2013) Biological degradation and solubilisation of coal. Biodegradation 24:305–318CrossRefPubMedGoogle Scholar
  92. Sharma U, Pal D, Prasad R (2014) Alkaline phosphatase: An overview. Indian J Clin Biochem 29:269–278CrossRefPubMedGoogle Scholar
  93. Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomics data. Front Plant Sci 5:1–14CrossRefGoogle Scholar
  94. Shen D, Yin J, Yu X, Wang M, Long Y, Shentu J, Chen T (2017) Acidogenic fermentation characteristics of different types of protein-rich substrates in food waste to produce volatile fatty acids. Biores Technol 227:125–132CrossRefGoogle Scholar
  95. Sinclair L (2016) Molecular methods for microbial ecology: Developments, applications and results. PhD thesis, Uppsala University, Uppsala.Google Scholar
  96. Singh CK, Kumar A, Roy SS (2018) Quantitative analysis of the methane gas emissions from municipal solid waste in India. Sci Rep 8:2913CrossRefPubMedPubMedCentralGoogle Scholar
  97. Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Biores Technol 127:500–507CrossRefGoogle Scholar
  98. Sivaramanan S (2014) Isolation of cellulolytic fungi and their degradation on cellulosic agricultural wastes. J Acad Ind Res 2:458–463Google Scholar
  99. Smith KA, Ball T, Conen F, Dobbie KE, Massheder J, Rey A (2018) Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur J Soil Sci 69:10–20CrossRefGoogle Scholar
  100. Song L, Wang Y, Tang W, Lei Y (2015a) Archaeal community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 99:6125–6137CrossRefPubMedGoogle Scholar
  101. Song L, Wang Y, Tang W, Lei Y (2015b) Bacterial community diversity in municipal waste landfill sites. Appl Microbiol Biotechnol 99:7745–7756CrossRefPubMedGoogle Scholar
  102. Song L, Wang Y, Zhao H, Long DT (2015c) Composition of bacterial and archaeal communities during landfill refuse decomposition processes. Microbiol Res 181:105–111CrossRefPubMedGoogle Scholar
  103. Stamps BW, Lyles CN, Suflita JM, Masoner JR, Cozzarelli IM, Kolpin DW, Stevenson BS (2016) Municipal solid waste landfills harbour distinct microbiomes. Front Microbiol 7:1–11CrossRefGoogle Scholar
  104. Tan ST, Ho WS, Hashim H, Lee CT, Taib MR, Ho CS (2015) Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Convers Manag 102:111–120CrossRefGoogle Scholar
  105. Tao Y, Zhou Y, He X, Hu X, Li D (2014) Pseudomonas chengduensis sp. nov., isolated from landfill leachate. Int J Syst Evol Microbiol 64:95–100CrossRefPubMedGoogle Scholar
  106. Tong H, Yin K, Giannis A, Ge L, Wang JY (2015) Influence of temperature on carbon and nitrogen dynamics during in situ aeration of aged waste in simulated landfill bioreactors. Biores Technol 192:149–156CrossRefGoogle Scholar
  107. Tozlu A, Özahi E, Abuşoğlu A (2016) Waste to energy technologies for municipal solid waste management in Gaziantep. Renew Sustain Energy Rev 54:809–815CrossRefGoogle Scholar
  108. Uz I, Rasche ME, Townsend ET, Lindner AS (2003) Characterization of methanogenic and methanotrophic assemblages in landfill samples. Biol Lett 270:S202–S205Google Scholar
  109. van Dyke MI, McCarthy AJ (2002) Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol 68:2049–2053CrossRefPubMedPubMedCentralGoogle Scholar
  110. van Elsas JD, Boersma FGH (2011) A review of molecular methods to study the microbiota of soil and the mycosphere. Eur J Soil Biol 47:77–87CrossRefGoogle Scholar
  111. van Wyk PHJ (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19:172–177CrossRefPubMedGoogle Scholar
  112. Vargas-Garcia MC, Suárez-Estrella FM, López J, Moreno J (2010) Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manag 30:771–778CrossRefPubMedGoogle Scholar
  113. Vergara SE, Tchobanoglous G (2012) Municipal solid waste and the environment: a global perspective. Annu Rev Environ Resour 37:277–303CrossRefGoogle Scholar
  114. Vetrovský T, Steffen KT, Baldrian P (2014) Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS ONE 9:e89108CrossRefPubMedPubMedCentralGoogle Scholar
  115. Wang X, Cui H, Shi J, Zhao X, Zhao Y, Wei Z (2015a) Relationship between bacterial diversity and environmental parameters during composting of different raw materials. Biores Technol 198:395–402CrossRefGoogle Scholar
  116. Wang Y, Tang W, Qiao J, Song L (2015b) Occurrence and prevalence of antibiotic resistance in landfill leachate. Environ Sci Pollut Res 22:12525–12533CrossRefGoogle Scholar
  117. Wang X, Cao A, Zhao G, Zhou C, Xu R (2017) Microbial community structure and diversity in a municipal solid waste landfill. Waste Manag 66:79–87CrossRefPubMedGoogle Scholar
  118. Wei Y, Li J, Shi D, Liu G, Zhao Y, Shimaoka T (2017) Environmental challenges impeding the composting of biodegradable municipal solid waste: a critical review. Resour Conserv Recycl 122:51–65CrossRefGoogle Scholar
  119. William EE, William SO, Wang YS, Barlaz M (1997) Biodegradability of municipal solid waste components in laboratory-scale landfills. Environ Sci Technol 31:911–917CrossRefGoogle Scholar
  120. Wu D, Huang Z, Yang K, Graham D, Xie B (2015) Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China. Environ Sci Technol 49:4122–4128CrossRefPubMedGoogle Scholar
  121. Ximenes FA, Cowie AL, Barlaz MA (2018) The decay of engineered wood products and paper excavated from landfills in Australia. Waste Manag 74:312–322CrossRefPubMedGoogle Scholar
  122. Xu SY, Karthikeyan OP, Selvam A, Wong JWC (2014) Microbial community distribution and extracellular enzyme activities in leach bed reactor treating food waste: effect of different leachate recirculation practices. Biores Technol 168:41–48CrossRefGoogle Scholar
  123. Xu S, Lu W, Liu Y, Ming Z, Liu Y, Meng R, Wang H (2017) Structure and diversity of bacterial communities in two large sanitary landfills in China as revealed by high-throughput sequencing (MiSeq). Waste Manag 63:41–48CrossRefPubMedGoogle Scholar
  124. Yan Y, Fotidis IA, Tian H, Khoshnevisan B, Treu L, Tsapekos P, Angelidaki I (2019) Acclimatization contributes to stable anaerobic digestion of organic fraction of municipal solid waste under extreme ammonia levels: focusing on microbial community dynamics. Biores Technol 286:121–376CrossRefGoogle Scholar
  125. Yang R, Xu Z, Chai J (2018a) A review of characteristics of landfilled municipal solid waste in several countries: physical composition, unit weight, and permeability coefficient. Pol J Environ Stud 27:2425–2435CrossRefGoogle Scholar
  126. Yang L, Lou J, Wang H, Wu L, Xu J (2018b) Use of an improved high-throughput absolute abundance quantification method to characterize soil bacterial community and dynamics. Sci Total Environ 633:360–371CrossRefPubMedGoogle Scholar
  127. Yesiller N, Hanson JL, Liu Y-L (2005) Heat generation in municipal solid waste landfills. J Geotech Geoenviron Eng 131:1330–1340CrossRefGoogle Scholar
  128. Yin J, Yu X, Wang K, Shen D (2016) Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids. Int J Hydrogen Energy 41:21713–21720CrossRefGoogle Scholar
  129. Zainun MY, Simarani K (2018) Metagenomics profiling for assessing microbial diversity in both active and closed landfills. Sci Total Environ 616–617:269–278CrossRefPubMedGoogle Scholar
  130. Zamanzadeh M, Hagen LH, Svensson K, Linjordet K (2016) Anaerobic digestion of food waste e Effect of recirculation and temperature on performance and microbiology. Water Res 96:246–254CrossRefPubMedGoogle Scholar
  131. Zhang X-H, Xu Y-B, He X-L, Huang L, Ling J-Y, Zheng L, Du Q-P (2016) Occurrence of antibiotic resistance genes in landfill leachate treatment plant and its effluent-receiving soil and surface water. Environ Pollut 218:1255–1261CrossRefPubMedGoogle Scholar
  132. Zhou M, Yan B, Wong JWC, Zhang Y (2018) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Biores Technol 248:68–78CrossRefGoogle Scholar
  133. Zhu X, Campanaro S, Treu L, Kougias PG, Angelidaki I (2019) Novel ecological insights and functional roles during anaerobic digestion of saccharides unveiled by genome-centric metagenomics. Water Res 151:271–279CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Environmental SciencesUniversity of South Africa (UNISA)JohannesburgSouth Africa

Personalised recommendations