Advertisement

Biofilm microbial composition changes due to different surface chemical modifications of activated carbon cloths in the biotransformation of 4-nitrophenol

  • J. P. García-Rodríguez
  • H. J. Amezquita-GarciaEmail author
  • C. Escamilla-Alvarado
  • J. R. Rangel-Mendez
  • K. Gutiérrez-García
Original Paper
  • 33 Downloads

Abstract

Activated carbon cloths (ACCs) were used as biofilms supports in the anaerobic biotransformation of 4-nitrophenol (4NP). As received ACC material (AW) was oxidized with HNO3 (OX) and then functionalized with anthraquinone-2,6-disulfonate (AQ). The three ACCs were packed in hybrid UASB reactors and seeded with anaerobic granular sludge for biotransformation experiments. The results indicated that ACC-packed bioreactors improved the biotransformation of 4NP by twofold as compared to the control reactor without support materials. However, the biotransformation effciency of AW, OX and AQ was very similar (59%), indicating the role of ACC as biofilm support and not as redox mediator. After 4NP biotransformation several physicochemical and biological changes were observed like (1) the point of zero charge (pHPZC) shift from acidic values (AW = 5.0, OX = 3.4, AQ = 3.1) to neutral values (pHPZC = 7.6 on average), (2) increase in the concentration of acidic and basic surface functional groups over ACC materials and the amount of supported biomass on ACCs due to biofilm formation, and (3) enrichment of exoelectrogenic microorganisms belonging to the genera Geobacter over carbonyl-rich ACC surface as revealed by 16S rRNA amplicon sequencing. Overall, the results suggest that chemical modifications of ACCs changed the microbial composition of the biofilm, but the higher concentration of carbonyl groups on ACC did not affect the biotransformation of 4NP.

Graphic Abstract

Keywords

Activated carbon cloth Point of zero charge Microbial composition changes Surface chemical modifications by biofilm 

Notes

Acknowledgements

Authors greatly acknowledge the economic support provided by PAICYT (IT606-18) and PRODEP (UANL-CA-385). Juan Pablo held a fellowship from Consejo Nacional de Ciencia y Tecnología (CONACYT, CVU: 781364). Authors also recognize the help provided by students Alejandra Elizabeth Cabezas Camacho, Debanhi Susana Cantú Bedair, Susana Nanely Ibarra Robles, and Héctor Sepúlveda Briones. We also appreciate the general support from Dr. Felipe de Jesús Cerino Córdova and Dr. Eduardo Soto Regalado. SEM images in the supporting material section were kindly provided by Dr. Eduardo Maximiano Sánchez Cervantes and Dra. Nora Aleyda García Gómez.

Supplementary material

10532_2019_9880_MOESM1_ESM.docx (12.1 mb)
Supplementary material 1 (DOCX 12426 kb)

References

  1. Amezquita-Garcia HJ, Razo-Flores E, Cervantes FJ, Rangel-Mendez JR (2013) Activated carbon fibers as redox mediators for the increased reduction of nitroaromatics. Carbon N Y 55:276–284.  https://doi.org/10.1016/j.carbon.2012.12.062 CrossRefGoogle Scholar
  2. Amezquita-Garcia HJ, Razo-Flores E, Cervantes FJ, Rangel-Mendez JR (2015) Anchorage of anthraquinone molecules onto activated carbon fibers to enhance the reduction of 4-nitrophenol. J Chem Technol Biotechnol 90:1685–1691.  https://doi.org/10.1002/jctb.4478 CrossRefGoogle Scholar
  3. Amezquita-Garcia HJ, Rangel-Mendez JR, Cervantes FJ, Razo-Flores E (2016) Activated carbon fibers with redox-active functionalities improves the continuous anaerobic biotransformation of 4-nitrophenol. Chem Eng J 286:208–215.  https://doi.org/10.1016/j.cej.2015.10.085 CrossRefGoogle Scholar
  4. Berber-Mendoza MS, Martínez-Costa JI, Leyva-Ramos R et al (2018) Competitive adsorption of heavy metals from aqueous solution onto oxidized activated carbon fiber. Water Air Soil Pollut 229:257.  https://doi.org/10.1007/s11270-018-3906-y CrossRefGoogle Scholar
  5. Boehm HP (1994) Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon N Y 32:759–769.  https://doi.org/10.1016/0008-6223(94)90031-0 CrossRefGoogle Scholar
  6. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefGoogle Scholar
  7. Cervantes FJ, Vu-Thi-Thu L, Lettinga G, Field JA (2004) Quinone-respiration improves dechlorination of carbon tetrachloride by anaerobic sludge. Appl Microbiol Biotechnol 64:702–711.  https://doi.org/10.1007/s00253-004-1564-z CrossRefGoogle Scholar
  8. Cui D, Li G, Zhao D, Zhao M (2015) Effect of quinoid redox mediators on the aerobic decolorization of azo dyes by cells and cell extracts from Escherichia coli. Environ Sci Pollut Res.  https://doi.org/10.1007/s11356-014-3698-6 Google Scholar
  9. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890CrossRefGoogle Scholar
  10. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461.  https://doi.org/10.1093/bioinformatics/btq461 CrossRefGoogle Scholar
  11. Emilia Rios-Del Toro E, Celis LB, Cervantes FJ, Rangel-Mendez JR (2013) Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator. J Hazard Mater 260:967–974.  https://doi.org/10.1016/j.jhazmat.2013.06.056 CrossRefGoogle Scholar
  12. Garcia ML, Lapa KR, Foresti E, Zaiat M (2008) Effects of bed materials on the performance of an anaerobic sequencing batch biofilm reactor treating domestic sewage. J Environ Manage 88:1471–1477.  https://doi.org/10.1016/j.jenvman.2007.07.015 CrossRefGoogle Scholar
  13. Gong W, Liang H, Li W, Wang Z (2011) Selection and evaluation of biofilm carrier in anaerobic digestion treatment of cattle manure. Energy.  https://doi.org/10.1016/j.energy.2011.03.068 Google Scholar
  14. Griebe T, Flemming HC (1998) Biocide-free antifouling strategy to protect RO membranes from biofouling. Desalination 118:153–156.  https://doi.org/10.1016/S0011-9164(98)00113-1 CrossRefGoogle Scholar
  15. Hai FI, Yamamoto K, Nakajima F, Fukushi K (2011) Bioaugmented membrane bioreactor (MBR) with a GAC-packed zone for high rate textile wastewater treatment. Water Res 45:2199–2206.  https://doi.org/10.1016/j.watres.2011.01.013 CrossRefGoogle Scholar
  16. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108CrossRefGoogle Scholar
  17. Hamamoto K, Miyahara M, Kouzuma A et al (2016) Evaluation of microbial fuel cells for electricity generation from oil-contaminated wastewater. J Biosci Bioeng 122:589–593.  https://doi.org/10.1016/j.jbiosc.2016.03.025 CrossRefGoogle Scholar
  18. Hwang G, Kang S, El-Din MG, Liu Y (2012) Impact of conditioning films on the initial adhesion of Burkholderia cepacia. Colloids Surf B 91:181–188.  https://doi.org/10.1016/j.colsurfb.2011.10.059 CrossRefGoogle Scholar
  19. Ip AWM, Barford JP, McKay G (2010) Biodegradation of reactive black 5 and bioregeneration in upflow fixed bed bioreactors packed with different adsorbents. J Chem Technol Biotechnol 85:658–667.  https://doi.org/10.1002/jctb.2349 CrossRefGoogle Scholar
  20. Kerčmar J, Pintar A (2017) Support material dictates the attached biomass characteristics during the immobilization process in anaerobic continuous-flow packed-bed bioreactor. Anaerobe.  https://doi.org/10.1016/j.anaerobe.2017.06.007 Google Scholar
  21. Kiely PD, Regan JM, Logan BE (2011) The electric picnic: synergistic requirements for exoelectrogenic microbial communities. Curr Opin Biotechnol 22:378–385.  https://doi.org/10.1016/j.copbio.2011.03.003 CrossRefGoogle Scholar
  22. Kjelleberg S, Hermansson M (1984) Starvation-induced effects on bacterial surface characteristics. Appl Environ Microbiol 48:497–503Google Scholar
  23. Li L, Wang J, Zhou J et al (2008) Enhancement of nitroaromatic compounds anaerobic biotransformation using a novel immobilized redox mediator prepared by electropolymerization. Bioresour Technol 99:6908–6916.  https://doi.org/10.1016/j.biortech.2008.01.037 CrossRefGoogle Scholar
  24. Li L, Zhou J, Wang J et al (2009) Anaerobic biotransformation of azo dye using polypyrrole/anthraquinonedisulphonate modified active carbon felt as a novel immobilized redox mediator. Sep Purif Technol 66:375–382.  https://doi.org/10.1016/j.seppur.2008.12.019 CrossRefGoogle Scholar
  25. Liu H, Guo J, Qu J et al (2012) Biological catalyzed denitrification by a functional electropolymerization biocarrier modified by redox mediator. Bioresour Technol 107:144–150.  https://doi.org/10.1016/j.biortech.2011.12.071 CrossRefGoogle Scholar
  26. Lovley DR (2017) Happy together: microbial communities that hook up to swap electrons. ISME J 11:327CrossRefGoogle Scholar
  27. Lovley DR, Coates JD, Blunt-Harris EL et al (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448.  https://doi.org/10.1038/382445a0 CrossRefGoogle Scholar
  28. Martins G, Salvador AF, Pereira L, Alves MM (2018) Methane production and conductive materials: a critical review. Environ Sci Technol 52:10241–10253CrossRefGoogle Scholar
  29. Mezohegyi G, Kolodkin A, Castro UI et al (2007) Effective anaerobic decolorization of azo dye acid orange 7 in continuous upflow packed-bed reactor using biological activated carbon system. Ind Eng Chem Res 46:6788–6792.  https://doi.org/10.1021/ie061692o CrossRefGoogle Scholar
  30. Moreno-Castilla C, Bautista-Toledo I, Ferro-García MA, Rivera-Utrilla J (2003) Influence of support surface properties on activity of bacteria immobilised on activated carbons for water denitrification. Carbon NY.  https://doi.org/10.1016/s0008-6223(03)00123-4 Google Scholar
  31. Pereira L, Pereira R, Pereira MFR et al (2010) Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction. J Hazard Mater 183:929–931.  https://doi.org/10.1016/j.jhazmat.2010.08.005 CrossRefGoogle Scholar
  32. Pereira RA, Pereira MFR, Alves MM, Pereira L (2014) Carbon based materials as novel redox mediators for dye wastewater biodegradation. Appl Catal B Environ 144:713–720.  https://doi.org/10.1016/j.apcatb.2013.07.009 CrossRefGoogle Scholar
  33. Pereira L, Pereira R, Pereira MFR, Alves MM (2016) Effect of different carbon materials as electron shuttles in the anaerobic biotransformation of nitroanilines. Biotechnol Bioeng 113:1194–1202.  https://doi.org/10.1002/bit.25896 CrossRefGoogle Scholar
  34. Rangel-Mendez JR, Streat M (2002) Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH. Water Res 36:1244–1252.  https://doi.org/10.1016/S0043-1354(01)00343-8 CrossRefGoogle Scholar
  35. Rivera-Utrilla J, Bautista-Toledo I, Ferro-Garca MA, Moreno-Castilla C (2001) Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption. J Chem Technol Biotechnol 76:1209–1215.  https://doi.org/10.1002/jctb.506 CrossRefGoogle Scholar
  36. Simões M, Cleto S, Pereira MO, Vieira MJ (2007) Influence of biofilm composition on the resistance to detachment. Water Sci Technol 55:473–480.  https://doi.org/10.2166/wst.2007.293 CrossRefGoogle Scholar
  37. Smith JA, Nevin KP, Lovley DR (2015) Syntrophic growth via quinone-mediated interspecies electron transfer. Front Microbiol.  https://doi.org/10.3389/fmicb.2015.00121 Google Scholar
  38. Speece R (1996) Anaerobic biotechnology for industrial wastewaters. Archae Press, NashvilleGoogle Scholar
  39. Takahashi S, Tomita J, Nishioka K et al (2014) Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 9:e105592.  https://doi.org/10.1371/journal.pone.0105592 CrossRefGoogle Scholar
  40. Tsuno H, Kawamura M, Oya T (2006) Application of biological activated carbon anaerobic reactor for treatment of hazardous chemicals. Water Sci Technol 53:251–260CrossRefGoogle Scholar
  41. Valero D, Rico C, Canto-Canché B et al (2018) Enhancing biochemical methane potential and enrichment of specific electroactive communities from nixtamalization wastewater using granular activated carbon as a conductive material. Energies 11:2101.  https://doi.org/10.3390/en11082101 CrossRefGoogle Scholar
  42. Van Der Zee FP, Bisschops IAE, Lettinga G, Field JA (2003) Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environ Sci Technol 37:402–408.  https://doi.org/10.1021/es025885o CrossRefGoogle Scholar
  43. van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87Google Scholar
  44. Wang AJ, Cheng HY, Liang B et al (2011) Efficient reduction of nitrobenzene to aniline with a biocatalyzed cathode. Environ Sci Technol 45:10186–10193.  https://doi.org/10.1021/es202356w CrossRefGoogle Scholar
  45. Wu S, Fang G, Wang Y et al (2017) Redox-active oxygen-containing functional groups in activated carbon facilitate microbial reduction of ferrihydrite. Environ Sci Technol.  https://doi.org/10.1021/acs.est.7b01854 Google Scholar
  46. Yates MD, Cusick RD, Logan BE (2013) Extracellular palladium nanoparticle production using geobacter sulfurreducens. ACS Sustain Chem Eng 1:1165–1171.  https://doi.org/10.1021/sc4000785 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Centro de Investigacion en Biotecnologia y Nanotecnologia (CIByN), Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo LeónParque de Investigacion e Innovacion TecnologicaApodacaMexico
  3. 3.División de Ciencias AmbientalesInstituto Potosino de Investigación Científica y TecnológicaSan Luis PotosíMexico
  4. 4.Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPNGuanajuatoMexico

Personalised recommendations